
Operation Manual

AutoTestSQL

AutoTestSQL
Operation Manual

by Liam Elliott

This manual is also available as 'on-line help' from the
dScope software. You can access the on-line help from the
'Help' menu. The on-line version is context-sensitive: by
pressing F1, you can get immediate help for whichever
menu or dialogue box you are currently using.

Table of Contents

Part 1 General information 1

Part 2 Introduction to AutoTestSQL 3

... 31 About this manual

Part 3 Operation overview 7

... 71 How it works

... 72 Getting started

... 93 User interface basics

... 104 AutoTestSQL modes

... 105 Reporting

... 106 AutoTestSQL and dScope

... 117 Licensing

... 118 Information about this software release

Part 4 Test structure 15

... 151 Test structure overview

... 162 Test Sets and Test Elements

... 173 Result Sets and Result Elements

... 184 How a result status is calculated

... 195 Scriptlets and their responsibility

Part 5 Test Scriptlets 23

... 231 Introduction to VBScript

... 242 Product and Test Set Scriptlets

... 243 The User Script

... 254 The SetResult function

... 265 Considering Fault-find mode

... 286 Script functions

... 28Optional Scriptlet functions

.. 28OnTestStart

.. 29OnTestFinish

.. 30ValidateSerialNumber

... 31Built-in functions

.. 31SetResult

.. 32GetLimits

.. 33GetMode

.. 34GetProductFamily

.. 34GetProduct

.. 34GetSerialNumber

.. 35GetOperatorName

.. 35GetOperatorID

.. 35TestStopped

.. 36TestFailed

.. 36StopTest

... 36Functions in the User Script

.. 37ColourMsgBox

.. 39FailMsgBox

.. 42Colours

.. 42Alignment

... 437 Writing and debugging scripts

... 43Choosing a script editor

... 44Writing scripts

... 45Debugging scripts

... 46Common script problems

... 47Reusability of scripts

Part 6 Operation reference 51

... 511 Menus

... 522 Toolbar

... 533 Setup mode

... 54Setting up Products

.. 55Entering/editing Product Family details

.. 55Entering/editing Product details

... 56Setting up tests

.. 58Entering/editing Test Set details

.. 59Entering/editing Test Element details

... 60Setting up Operators

.. 61Entering/editing Operator Details

... 624 Test mode

... 63Fields and controls

... 65Tree of results

... 66Running a test

... 67Stopping a test

... 67Re-testing failures

... 68Test completion

... 70The Test Report

... 715 Fault-find mode

... 71How Fault-find mode works

... 72Fields and controls

... 74Selecting a failed result

... 76Entering fault details

... 77Knowledge of the test structure

... 786 Reports

... 797 Options dialogue box

... 828 AutoTestSQL security

Part 7 The AutoTestSQL database 87

... 871 Database structure

... 882 Database tables

... 933 Using SQL from the command-line

... 934 Changing the database administrator password

... 945 Creating new database logins

... 946 Backing up and restoring the database

... 957 Multi-user setup

... 968 Limitations of MSDE

Part 8 Management reporting 99

... 991 Connecting to the database

... 1002 The AutoTestSQL Report Viewer

... 100User interface basics

... 102Menus

... 102Options dialogue box

... 103The Crystal Report viewer

... 104Creating your own report templates

Part 9 Glossary 109

Index 114

General information

Part

1

1

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

1 General information

Manual revision history

Rev Date Author Notes

0.94 26th April 2004 L.R.Elliott To accompany first beta software
release (V0.94).

0.95 7th October 2004 L.R.Elliott To accompany Beta release V0.95

0.96 4th February 2005 L.R.Elliott To accompany release V1.00

Support contacts

Prism Media Products Limited Prism Media Products Inc

William James House 21 Pine Street

Cowley Road Rockaway

Cambridge CB4 0WX NJ 07866

UK USA

Telephone: +44 1223 424988 Telephone: +1 973 983 9577

Fax: +44 1223 425023 Fax: +1 973 983 9588

Email: tech.support@prismsound.com

Web: http://www.prismsound.com

Or contact your local Prism Sound distributor as detailed on the website.

Trademark acknowledgements

Access, ActiveX, Microsoft, MSDE, SQL Server, Visual Basic, VB, VBA, VBScript and Windows are
trademarks of Microsoft Corporation.

Crystal Reports is a trademark of Business Objects.

MySQL is a trademark of MySQL AB.

All trademarks acknowledged.

© 2004-2005 Prism Media Products Limited. All rights reserved.
This manual may not be reproduced in whole or part, in any medium, without the written permission of
Prism Media Products Limited.

In accordance with our policy of continual development, features and specifications are subject to
change without notice.

http://www.prismsound.com

Introduction to AutoTestSQL

Part

2

3

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

2 Introduction to AutoTestSQL

AutoTestSQL is an automated test management system that allows a series of tests to be performed
on a number of different Products. It is designed to work in conjunction with the dScope Series III
Audio Test & Measurement system. Tests are specified in a hierarchical structure, and stored in a
database. Small Scriptlets (written in the VBScript programming language) are written to perform
individual parts of the test; when the test is run, these write results into the database. The database
can be later queried for results, and any number of reports created for the details stored.

For a quick overview of AutoTestSQL operation go to Operation overview.

For an in-depth description of setting up a test structure, see Test structure.

For a guide to writing Test Scriptlets for AutoTestSQL, see Test Scriptlets.

For an in-depth reference to using AutoTestSQL, see the Operation reference.

If you would like to delve deeper into the way the AutoTestSQL database works, see
The AutoTestSQL database.

2.1 About this manual

The AutoTestSQL Operation Manual is provided in two different formats: as a conventional printed
manual, and also as 'on-line help' which can be viewed whilst operating AutoTestSQL. The printed
version is also provided in 'electronic' format, as a 'pdf' file, with the AutoTestSQL software. These
files can be viewed and printed using the Adobe Acrobat Reader, which can be downloaded free at
www.adobe.com. Updates of the manuals are available from the Prism Sound website at
www.prismsound.com.

When viewed on-line, the manual pages are accompanied by a navigation area to the left. Therein, a
"Contents" section shows a hierarchical map of the entire document from which desired pages can be
selected. Next to "Contents", the "Index" section allows instant access to pages describing particular
topics. The "Search" section lists all pages containing a particular word or phrase, and the "Favorites"
section can be used to save page locations for future reference.

4

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Entry into the on-line help from the AutoTestSQL application is 'context-sensitive', so pressing the F1
key takes you directly to the help page for whichever dialogue box or panel you are using at that time.

When viewed as on-line help, each page is headed by a title block which shows the name of the
page, plus some links on the right-hand side. The upper row of links refer to topics above the current
page in the manual's hierarchy. Below, a "See Also" link often appears which accesses a pop-up box
containing a list of related topics.

Within the body of each page, certain font and highlighting conventions are used:

Links to other parts of the manual are shown like this.

Buttons on the AutoTestSQL dialogue boxes are designated, for example, [OK].

Code samples are shown in this font...

Noteworthy items are indicated like this.

Important warnings are designated like this.

Operation overview

Part

3

7

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

3 Operation overview

This section gives an overview of the operation of the AutoTestSQL application. For a more in-depth
reference, see the Operation reference section.

For a brief guide to AutoTestSQL operation, see How it works.

For some important information on getting started with AutoTestSQL, see Getting started.

For a description of the AutoTestSQL user interface, see User interface basics.

If you would like to see the changes in this version of the software, please see
Information about this software release.

3.1 How it works

AutoTestSQL uses a database to store details of tests and results for a range of different Products. It
allows the Operator to enter and edit a series of tests, grouped in a hierarchical structure. These tests
are associated with a number of Scriptlets, written in the VBScript programming language, that
perform the tests themselves (usually with the aid of the dScope software). The results are then
written into the database; from here they can be used to produce full test results for an EUT, or can
be used for management reporting purposes.

If a failure occurs during a test, AutoTestSQL can be used to pin-point the failure, analyze the reasons
for failure, and record its details in the database. This provides a way of analyzing the most common
problems, and thereby reducing their occurrence.

AutoTestSQL has three different modes of operation that it uses to perform these tasks. Setup mode
allows the Products and test structure to be entered, and Test mode allows the tests to be performed.
Fault-find mode allows the system to be taken back to the state it was in at any point of failure, in
order for that failure to be analyzed and fixed, and its details to be logged. For further details of these
modes, see AutoTestSQL modes for an overview, or the Operation reference for an in-depth
description.

AutoTestSQL reporting is currently external to the AutoTestSQL application. It is proposed that a
professional Report Management tool (such as Crystal Reports) will be used for the most flexible and
useful reporting capability. See Management reporting for further details.

3.2 Getting started

Before starting to use AutoTestSQL, please read the Operation overview. This will give you a basic
background. For full details of setting up tests and writing scripts, you will need to refer to the sections
on Test structure and Test Scriptlets.

MSDE is the database used by the AutoTestSQL software. When MSDE is first installed, the
database itself will have a system administrator user with a blank password. To prevent unauthorized
access to the AutoTestSQL database, it is important that this password is changed. See
Changing the database administrator password for details.

It is also important to back up your database regularly. See Backing up and restoring the database for
details of how to do this.

8

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

When running AutoTestSQL for the first time, you will be prompted to log in.
Initially, there is only one Operator available on the system, the Administrator,
so you will have to log in as this Operator. The default password for the
Administrator is blank, but you will be asked to change this as soon as you
have logged in for the first time.

Terminology

Some names of parts of AutoTestSQL can be changed. For example, you may wish to call a "Product
Instance" an EUT, and an "Operator" a User. These changes can all be made using the
Options dialogue box, available from the Utility menu.

Within this manual however, the names of all these items are given the AutoTestSQL defaults. These
are:

Product Family: A group of Products.
Product: The actual items that are tested.
Product Instance: Individual instances of Products. A Product Instance equates to a single item of
Equipment Under Test (EUT).
Operator: A user of AutoTestSQL, that sets up the tests and performs testing and fault-finding.
Scriptlet: An individual script file that is associated with a Test Set.
Test Set: A group of tests. This group may contain Test Elements, and/or other Test Sets.
Test Element: A Test entity that corresponds to a single value (numerical, pass/fail or text) that will
be entered into the database.
Result Set: A group of results. This group may contain Result Elements, or other Result Sets.
Result Element: A single result value that will be entered into the database.

9

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

3.3 User interface basics

The user interface of AutoTestSQL comprises a number of basic elements:

Menu bar
Toolbar
Main window (two vertical panes)
Status bar

Menu bar

The Menu bar is situated at the top of the AutoTestSQL window. It provides access to several
functions of AutoTestSQL that are not available on the main Toolbar.

Toolbar

Below the Menu bar is the Toolbar. This contains buttons for some common Windows tasks together
with buttons used to access the main modes of AutoTestSQL.

Main window

The main part of the AutoTestSQL window is split vertically into two panes. The contents of each of
these panes is dependent on the current mode of operation of AutoTestSQL.

10

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Status bar

The bottom line of the AutoTestSQL window is the Status bar. This shows important indications of
the current state of AutoTestSQL, including warning messages.

Full details of all these parts of the user interface can be found in the Operation reference chapter.

3.4 AutoTestSQL modes

AutoTestSQL can operate in three different modes. These modes are used for different stages of the
test process.

This section gives a brief overview of each of the modes; for full details, see the Operation reference.

Setup mode is used to initially define the Products that will be tested, and the tests that will be
performed on them. It allows you to specify a hierarchical structure of tests for each Product, and
associate the tests with Scriptlets that will be used to run the tests. It also allows setup of the different
Operators that will use the system, and allows specification of the different tasks that each one can
perform.

Test mode is used to run the tests. This is the most common mode of operation, and is the mode
entered when AutoTestSQL is started. When a test has finished, all results can be logged to the
database for future reference or analysis. Upon completion of a test, a Test Report can be produced if
required.

Fault-find mode can be used after a test has failed, to find out more information about the failure.
Once the point of failure has been selected, AutoTestSQL will take the Operator back to that point in
the test. Other equipment and applications (for example, the dScope software, or a multi-meter) can
then be used to determine the cause of the fault. If required, the details of the fault can be written to
the database for later analysis.

3.5 Reporting

There are two types of report in AutoTestSQL:

A Test Report can be produced if required at the end of a test, giving pass/fail details of individual
parts of the test. This is structured with the same hierarchy used to set up the tests. For full detail of
this report, see the section on The Test Report in the Operation reference.

Management reports can be created by querying the database for information about a test or range
of tests. For example, you could create a report that lists all the failures that occurred for a given
product line; or you could list all the tests done within a time period and whether they passed or failed.
For full details on management reporting, see Management reporting.

3.6 AutoTestSQL and dScope

The Windows operating system allows different pieces of software to communicate with each other
using a process known as OLE Automation. The dScope software uses this technology to allow itself
to be automated by other applications. It does this by exposing an interface, defined in a standard
language called "Object Definition Language", to the Windows operating system. This interface is
defined in a Type library, and any Windows program that can control automation-enabled objects can
control the dScope.

The AutoTestSQL software is just such an application. AutoTestSQL uses VBScript to run its tests,

11

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

which has the capability of using any application with an automation interface. It can therefore control
the dScope software, and use any of the exposed methods or properties of its interface.

AutoTestSQL creates an instance of the dScope application when Test mode or Fault-find mode is
entered. This dScope application can then be used by Scriptlets throughout the test process. The
dScope application is shut down again when the mode is no longer Test or Fault-find (for example,
entry of Setup mode, or closing of the AutoTestSQL application).

When dScope is started, AutoTestSQL will check this dScope for a valid
licence key. For further details, see the Licensing section of this manual.

3.7 Licensing

The AutoTestSQL software is licensed for use with a single dScope Series III. This means that Test
mode or Fault-find mode can only be run if the appropriately licensed dScope is attached to the
computer that the AutoTestSQL software is running on. Setup and Report modes will always be
available, regardless of whether a valid licence is present.

When Test or Fault-find mode is entered, AutoTestSQL will attempt to start up a dScope attached to
the system. If successful, this dScope's serial number will be read and checked against the
AutoTestSQL licences on the PC. If no valid licence is found, then the Operator will be informed and
AutoTestSQL will enter Setup mode.

If you have multiple copies of AutoTestSQL, and several dScopes, then the
licences for each dScope can be applied to each computer running
AutoTestSQL, so that you can use the AutoTestSQL software with any of the
licensed dScopes.

AutoTestSQL can be run for a limited period of 30 days from installation without a licence.

To obtain a licence for AutoTestSQL, please contact Prism Sound using the details in the
General Information page.

3.8 Information about this software release

Although we have tried to make AutoTestSQL's operation as generic and useful as possible, there
may be areas where you find that the functionality does not suit your purposes very well. We welcome
your comments regarding the software's feature set, and any bugs in the software that may be found.
These comments will be added to a list of future issues to be included in the software.

Please e-mail your comments, suggestions and bug reports to tech.support@prismsound.com.

New features

The following changes have been made to the software between V0.95 and V1.00

· Name changed to AutoTestSQL
· Software licensing added
· Ability to select which mode AutoTestSQL starts up in.

The following changes were made to the software between V0.94 and V0.95

· Ability to re-test the last Test Set, if a failure occurs during the test (See Re-testing failures).

12

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

· Database access no longer occurs throughout the test, to speed up the testing process. Results are
now written to the database at the end of the test.

· Product Instance table has been removed from the database (See Database structure and
Database tables).

· Option of whether to save untested results to the database, and how to mark items that have been
retested. (See Options dialogue box).

Test structure

Part

4

15

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

4 Test structure

Before using AutoTestSQL to test your Products, you must define the tests that are to be performed.
To do this, you will need to decide on a structure for these tests. Once this structure exists, tests can
be easily created within the AutoTestSQL application.

For an overview of how tests are structured, see Test structure overview.

For details of Test Sets and Test Elements, the constituent parts of the test structure, see
Test Sets and Test Elements.

For information on how the structure of results corresponds to this test structure, see
Result Sets and Result Elements.

To see where Scriptlets fit into this test structure, see Scriptlets and their responsibility.

4.1 Test structure overview

Within AutoTestSQL, tests are structured hierarchically to enable sensible grouping of results.

An individual item in a test that will produce a single result (whether numerical, pass/fail, or text) is
called a Test Element. Test Elements can be grouped together within Test Sets, which can be
grouped in turn into further Test Sets, to a maximum of 10 levels.

For example, part of a test structure for a stereo product could be:
XLR Input Tests

Channel 1
Amplitude (dBu)
THD+N (dB)
Cross-talk (%)

Channel 2
Amplitude (dBu)
THD+N (dB)
Cross-talk (%)

In this simple example, XLR Inputs Tests, Channel 1, and Channel 2 are all Test Sets, while
Amplitude, THD+N and Cross-talk are Test Elements. Each Test Element corresponds to a single
result value that will be stored in the database. The Test Element is set up with limits; every result that
is read for this Test Element will be compared to these limits when written to the database, to give the
corresponding Result Element a status of pass or fail.

A Test Set grouping can be anything that is sensibly grouped in a list of test results. For example, you
are likely to perform similar tests for each channel of a stereo or multi-channel product; therefore the
group of results for each channel would make a sensible Test Set. The tests that you do on your EUT
inputs could be grouped together in a Test Set; likewise, the tests done on the EUT Outputs could be
another Test Set.

When a test is run, a set of results will be created in the database for the test. The way that the results
are structured corresponds exactly to this test structure - i.e. A Result Set will be created for each
Test Set in the test structure, and a Result Element will be created for each Test Element. This allows
test results to be sorted in such a way as to mirror the structure used when setting up the tests.

For full details of Test Sets and Test Elements, see Test Sets and Test Elements. For a description of
Result Sets and Result Elements, see Result Sets and Result Elements.

16

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

4.2 Test Sets and Test Elements

This section describes in detail the two constituent parts of a test structure. For an overview, see
Test structure overview. For full details on setting up Test Sets and Test Elements, see
Setting up tests in the Operation reference.

Test Sets

A Test Set is any grouping in the test structure of Test Elements, or other Test Sets. Test Sets exist
for two purposes: Firstly, to group together Test Elements or other Test Sets in a list of test results;
and secondly, to act as a placeholder for Scriptlets that actually perform the tests and record the
results.

When setting up a Test Set, you define the following:

Name: The name of the Test Set.

Scriptlet: The file name of an optional Scriptlet associated with the tests within this Test Set. For full
details of how these Scriptlets work within the test structure, see Scriptlets and their responsibility.

For full details of entering or editing a Test Set in Setup mode, see Entering/editing Test Set details.

Test Elements

A Test Element is part of the test structure at the lowest level that corresponds to a single result value
that will be stored in the database. For example, a single measurement of THD+N to be made on
channel A will be entered into the test structure as a Test Element. If a sweep is to be done (for
example a frequency response), then each point in the sweep will be a different Test Element, since
each point will correspond to a separate value in the test results.

Test Elements have a number of different properties that can be defined:

Description: This describes exactly what the result value means. For numerical values, it is
important that this description (or the description of its parent Test Set) contains details of the unit in
which the value is expressed. For example, a Test Element representing an Amplitude measurement
should specify in the description the unit in which the amplitude is measured in, e.g. "Amplitude
(Vrms)". For a series of measurements, this information could be specified in the parent Test Set -
e.g. for a frequency response sweep, the Test Set could be called "Frequency response (dB)", with
each Test Element's description simply detailing the frequency at which the value was measured.
In the amplitude example, the test results would list the Result Element as:

Amplitude (dBu) : 12.43
In the frequency response example, the results would be shown in the following way:

Frequency response (dB)
20Hz: -0.30
100Hz: -0.01
1kHz: 0.00
5kHz: 0.02
20kHz: -0.04

The structuring of this description is entirely up to you, but you can see that without specifying the unit
in the description of the Test Element or the name of the Test Set, the values would be meaningless
to anyone looking at the test results.

Result type: This defines the type of result that will be written into the database. It can be one of
three types: a numerical value, a pass/fail value, or a text string. The type of result, together with the
Upper and Lower limits, will determine how the status of the result is stored. See
How a result status is calculated for full details.

Use ... decimal places when displaying results: This applies only to numerical values and is used

17

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

when displaying a Test Report. It simply determines how the numbers are rounded for display
purposes.

 This property defines only how the result is displayed on test results and test reports; The
number itself is stored in the database as a double-precision number to the same accuracy as was
used by the SetResult function call in the test Scriptlet.

Upper & Lower Limits: For numerical and text string values, these limits define how the status of the
corresponding Result Element will be calculated. See How a result status is calculated for full details.

For full details of entering or editing a Test Element in Setup mode, see
Entering/editing Test Element details.

4.3 Result Sets and Result Elements

When a test is performed, a Test Session record is entered in the database. This contains details of
the date and time of the test, together with a link to the current Operator and the Product Instance
that is being tested. Under this Test Session, a set of results is created that corresponds to the test
structure. This set of results is structured as Result Sets and Result Elements.

Result Sets

A Result Set is created to represent the Test Set in the set of results. It is linked to its parent Result
Set (if it is not at the top level), and also to the Test Set from which it has been created, giving access
to the name of the Test Set. It exists solely as a way of grouping together Result Elements and other
Result Sets.

Result Elements

A Result Element is created to store a single result value in the database. It is linked to a parent
Result Set, and also to the Test Element from which it was created. This gives it access to the Test
Element's description, together with the limits and result type.

Since Result Sets and Result Elements are stored in the database in an identical structure to the Test
Sets and Test Elements, it is easy to extract results from the database in the hierarchical order in
which the test structure was created. Even if the test structure is subsequently changed, existing sets
of results will retain the original Test Set structure which was mirrored when the results were created.

18

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

4.4 How a result status is calculated

When a Result Element is written to the database using the SetResult function, its result status is
calculated for the purposes of displaying the status on a Test Report, and giving an indication on the
result display whether a test, or part of a test, has failed.

A result status can be one of four possible values:

Passed This part of the test has passed.
This status is usually represented on the display or on Test Reports with
the word "Passed", in green.

Failed This part of the test has failed.
This status is usually represented on the display or on Test Reports with
the word "FAILED", in red.

Unknown AutoTestSQL cannot work out whether this result has passed or failed.
This is common when a test is run, because AutoTestSQL must create
Result Elements in preparation for writing results to the database.
However, until the relevant Scriptlet has called SetResult, the status is
unknown.
This status is usually represented on the display or on Test Reports as
"...".

Non-critical This status applies to a result for which no limits have been set.
Since there are no limits, the result is assumed to be for information only.
Non-critical results do not have any associated status on the display or on
Test Reports.

Result types and Limits

Each Test Element (and therefore each corresponding Result Element) can have one of the following
result types. For each one, the result status is calculated differently according to the upper and lower
limits specified:

19

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Numerical value If neither an upper nor lower limit has been specified, then the result status
will be Non-critical.
If an upper limit has been specified, and the result value is above this limit,
then the result status will be Failed.
If a lower limit has been specified, and the result value is below this limit,
then the result status will be Failed.
Otherwise, the result status will be Passed.

Pass/fail The SetResult function can accept either a boolean variable (True or
False) as the result parameter, in which case the result status will be
Passed or Failed, respectively.
Alternatively, a string can be passed to the SetResult function, in which
case AutoTestSQL will try to determine whether the string represents a
pass or a failure. AutoTestSQL will treat values of "Valid", "True", "Yes" or
anything beginning with "Pass" as Passed; "Invalid", "False", "No" or
anything starting with "Fail" will be flagged as Failed. Anything else is
treated as Unknown.
Note that for pass/fail result types, the upper and lower limits are irrelevant
for this type of result, as the status is implicit in the result value.

String If neither an upper nor a lower limit have been specified, the result status
will be Non-critical.
If an upper limit only has been specified, then the result string must match
this string to be stored as Passed. Otherwise it will be Failed.
Similarly, if a lower limit only has been specified, then the result string must
match this string to be stored as Passed. Otherwise it will be failed.
If both the upper and lower limits have been specifed, then the result string
must match one of these to be stored as Passed; otherwise, it will be
Failed.

Status of parent Result Sets and Test Sessions

When a Result Element's status is calculated, this will affect the status of its immediate parent in the
result structure, and all the parent items recursively up to the Test Session at the top of the set of
results.

If any Result Element fails, then its parent Result Set is also flagged as failed; moving recursively up
the tree of results, each parent Result Set will be flagged as failed and therefore the Test Session as
a whole is a failure.

If a Result Set has some Result Elements that have passed, and the rest are unknown (because
results have not yet been stored), then the parent Result Set's status is unknown (it cannot be known
until the status of all the Result Elements have been set). Thus, the status of the Test Session as a
whole is unknown, unless another Result Set within it has failed, in which case the Test Session is
also a failure.

The only way a Result Set can pass is if all it's Result Elements and child Result Sets have
themselves passed (or are non-critical). In the same way, a Test Session can only pass if all its Result
Sets have passed or are non-critical.

If any Result Element in a set of results is a failure, then the Test Session as a whole is marked as a
failure.

4.5 Scriptlets and their responsibility

A test structure is grouped into Test Sets, each of which can have any number of Test Elements
and/or child Test Sets. Each Test Set can have a Scriptlet associated with it, that can perform part, or
all, of the tests required for that Test Set.

20

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

This section gives an overview of how Scriptlets fit into the test structure. For a full reference, see the
Test Scriptlets section.

There are two places where a Scriptlet can be defined: For the Product itself, or for each Test Set.
These Scriptlets have slightly different responsibilities:

Product Scriptlet

A Product Scriptlet can contains constants, variables, functions and subroutines that can be used
throughout the tests for this Product.

Test Set Scriptlet

A Test Set Scriptlet contains code for an individual test or group of tests. It can run the tests (and
store the results) for any of the Test Elements below it in the test structure.

It is important to consider carefully the location of a Test Set Scriptlet in the test structure, and limit the
number of tests performed by a single Scriptlet, because of the way Fault-find mode works. An
example of the options available is given below; to find out more about how Fault-find mode uses the
Scriptlets in the test structure, see Considering Fault-find mode.

Example

For example, consider the following part of a test structure. Note that in reality a test structure would
be much more complicated than this, and the issues raised will therefore apply on a larger scale:

D/A Converter
Audio Tests

XLR Input Tests
Channel 1

Amplitude (dBu)
THD+N (dB)
Cross-talk (%)

Channel 2
Amplitude (dBu)
THD+N (dB)
Cross-talk (%)

XLR Output Tests
..

Other Tests
..

In this case, the top level is the Product, the next three levels are Test Sets and the lowest level
represents the Test Elements. Within each channel shown here, three measurements need to be
taken (Amplitude, THD+N, and Cross-talk). It must be the responsibility of a Scriptlet in one of the
Test Sets above these to make the measurements and record them in the database.

There are three possibilities here:

Option 1
The "Channel 1" and "Channel 2" Test Sets could each have an associated Scriptlet that sets the
channel, then makes the three measurements. This could even be the same Scriptlet, providing that
the channel being measured was set before taking the measurements.
The "XLR Input Tests" and "Audio Tests" Test Sets then have no responsibility to make any
measurements, and in fact do not need to contain Scriptlets at all, since the Test Sets below it are
making all the necessary measurements. However, they could be used to change any relevant
settings (such as loading a dScope Configuration) that were relevant to the tests below them.

21

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Option 2
The "XLR Input Tests" Test Set could have a script that makes all the measurements below it in the
test structure - i.e. Amplitude, THD+N and Cross-talk on two channels. This would mean that the
"Channel 1" and "Channel 2" Test Sets would not contain Scriptlets, since there is nothing for them to
do. The "Audio Tests" Test Set does not need to make any measurements, although as in the
example above, it could be used to change any relevant settings before the measurements are made.

Option 3
The "Audio Tests" Test Set could contain a Scriptlet that makes all the measurements for all the Test
Elements in Test Sets below it. This leaves "XLR Input Tests", "Channel 1" and "Channel 2" with
nothing further to do. However, it means that the Scriptlet would be a considerable size since it has to
make ALL measurements in "XLR Input Tests" and "XLR Output Tests".

Of these choices, option 2 is the best approach. It can make use of the dScope's ability to make
measurements on both channel A and channel B at the same time, thus speeding up the tests. Option
1 does not make use of this ability, and option 3 will result in an enormous Scriptlet that will cause
problems in fault-find mode (since fault-find mode would have to run the entire Scriptlet up to any
point of failure within it).

Test Scriptlets

Part

5

23

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5 Test Scriptlets

Within AutoTestSQL, Scriptlets can be written to manipulate the dScope and the EUT, make
measurements, and record results in the database. Different Scriptlets are set up to perform different
parts of a test; these are run in the order defined by the test structure to perform the complete test.

Scriptlets are written in the VBScript programming language. For more details, see
Introduction to VBScript.

For a description of the difference between Product Scriptlets and Test Set Scriptlets, see
Product and Test Set Scriptlets.

For an in-depth reference of built-in functions and subroutines, see Script Functions.

5.1 Introduction to VBScript

VBScript, or Microsoft Visual Basic Scripting Edition, is a lightweight programming language. It was
originally designed to help to automate web pages, and has evolved to become a useful automation
tool. It is a subset of Visual Basic, and contains many of the same language features.

VBScript allows use of simple programming constructs - for example, loops and conditional
statements. It can also use ActiveX controls which greatly increases its functionality (see
VBScript and ActiveX Controls, below) and this allows AutoTestSQL to control other software. This
enables it to work in conjunction with the dScope, since the dScope software has a built-in automation
interface allowing access to all its settings via properties and methods.

It is beyond the scope of this Help file to provide a detailed description of VBScript; there are a
number of resources available to help you out in this respect.
Documentation on Windows Script Technologies, including VBScript, can be downloaded from the
Microsoft web site to give a detailed description of VBScript functionality.

VBScript and ActiveX Controls

One of the main benefits of VBScript is that it can create and use ActiveX controls. This enables it to
create instances of other software applications, and use any properties and methods exposed by such
software. This is the way that AutoTestSQL works in conjunction with the dScope. It also means that
other useful pieces of test equipment can be used, if they have an ActiveX interface - for example,
digital multi-meter PC cards.

Creation of an ActiveX control from a script is very simple. You simply have to create an object of the
relevant type; the objects and properties of this method can then be used in the script by prefixing with
the name of this object.

As an example, consider creation of the dScope object from VBScript:

' Variables
Dim dScope ' The dScope object

' Create the dScope object
Set dScope = CreateObject("dScope.Application")

Any of the dScope's properties and methods can then be used by using them with a "dScope."
prefix.

See the descriptions of OnTestStart and OnTestFinish for a full example of using the dScope within a
Scriptlet.

http://download.microsoft.com/download/7/c/b/7cbde286-799e-4d83-bf5b-a9a0d8c9df84/scrdoc56en.exe

24

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The Scriptlets can also use the ScriptDlg ActiveX Control provided with the dScope to allow specific
user interface options to be shown to the Operator - for example, drop-lists, buttons and slider
controls. Please see the section on the ScriptDlg ActiveX Control in the dScope Scripting Manual for a
full reference, or the sections on ColourMsgBox and FailMsgBox for some examples of how it can be
used.

5.2 Product and Test Set Scriptlets

When setting up a test structure, Scriptlets can be associated with the Product itself, and for any or all
of the Test Sets within the Product. When a Product Instance is tested, these Scriptlets are run in the
order determined by the hierarchical test structure for that Product.

This section explains in detail what can be contained in each type of Scriptlet.

Product Scriptlet

This Scriptlet will only occur ONCE during a test. It will be loaded at the start of a test, and will remain
in memory for the duration of the test. It can thus contain constants, variables, functions and
subroutines that can be used from any of the Test Set Scriptlets that make up the rest of the test
structure.

The contents of the Product Scriptlet will be 'run' when the test starts. Global variables defined here
will therefore be initialised and available for use throughout all Scriptlets, but you should not include
any code unless it is contained within a function or a subroutine. If you require code to run at the start
of a test, see the description of the OnTestStart function.

Test Set Scriptlets

There are likely to be many Test Set Scriptlets involved in a test. Each of these is loaded and run at
the relevant point in the test, as determined by the test structure for the Product being tested. If a
failure results in part of the test being repeated (See Re-testing failures), the relevant Test Set
Scriptlet for that part of the test will be re-run.

Each of these Scriptlets is loaded and run to perform a particular test, or sequence of tests. It can
contain variables and constants of its own, but these are only available for the duration of the Scriptlet
(i.e. while it is running). A Test Set Scriptlet can use any functions, subroutines or variables defined in
the Product Scriptlet (see above).

5.3 The User Script

AutoTestSQL allows VBScript functions and subroutines to be written that can be reused throughout
all tests for all Products. Anything that is Product-specific should be put in the Product Scriptlet;
however there are times when functions may be useful across the entire range of Products, in which
case they need to be put somewhere that can be used from any Scriptlet for any Product.

AutoTestSQL provides the User Script for this purpose. It is a script called User.vbs which resides in
the Scripts folder (as defined in the Options dialogue box). Into this can be inserted any functions and
subroutines that will then be available to all Test Set Scriptlets.

A sample User Script is provided with AutoTestSQL, that contains some useful pre-defined functions
and subroutines. For details of these, see Functions in the User Script.

25

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.4 The SetResult function

Within a Scriptlet, VBScript can be written to set up the test equipment (for example, the dScope) and
the EUT. The test equipment can be queried to take measurements, and it is up to the Scriptlet to
then write these measurements to the database.

The measurements are written to the database using the SetResult function. This function takes a
result value (either a numerical value, a boolean value representing pass/fail, or a text string) and,
optionally, details of which result element it is writing to (See SetResult in the Built-in functions section
for a detailed description of this function's parameters).

A Scriptlet for a Test Set can use the SetResult function to write any of the results below it in the test
structure. It can do this in one of two ways: either in the order in which they are listed (in which case
the call to SetResult only needs to pass the result value itself), or in any order chosen by the script
writer (in which case extra parameters need to be passed to SetResult, to indicate which result is
being written).

In order for Fault-find mode to work correctly, and enable the script to be
stopped in the correct state at any call to SetResult, the SetResult function
must be called at the point that the measurement is made. See
Considering Fault-find mode for full details.

For example, consider the following part of a test structure:

D/A Converter
Audio Tests

XLR Input Tests
Channel 1

Amplitude (dBu)
THD+N (dB)
Cross-talk (%)

Channel 2
Amplitude (dBu)
THD+N (dB)
Cross-talk (%)

XLR Output Tests
..

Other Tests
..

We will assume for this example that the "XLR Input Tests" Test Set contains the Scriptlet whose
responsibility it is to write the results to the database. There are two ways on which the results could
be written:

The first way involves writing the six results to the database in the order that they are listed in the tree
structure, i.e.

SetResult(ampl_ch1)
SetResult(thdn_ch1)
SetResult(crosstalk_ch1)
SetResult(ampl_ch2)
SetResult(thdn_ch2)
SetResult(crosstalk_ch2)

(Note that code would have to be written in between these calls, to actually read the results from the
dScope into the variables named ampl_ch1, thdn_ch1, etc).

The second way allows us to write the results in any order that we choose. For example, using the
dScope, it is possible to read both channel's results at the same time, so time would be saved by
doing this within the script. In this case, we would probably read both channels' amplitude first, then
the distortion, then the cross-talk. In this case the SetResult calls would be done in a different order to
the order of the Test Elements in the test structure, and so we would have to supply the location of

26

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

each result as part of the call to SetResult:
SetResult(ampl_ch1, 0, 0)
SetResult(ampl_ch2, 1, 0)
SetResult(thdn_ch1, 0, 1)
SetResult(thdn_ch2, 1, 1)
SetResult(crosstalk_ch1, 0, 2)
SetResult(crosstalk_ch2, 1, 2)

In each of these cases, we need to pass to SetResult the zero-based indexes of the result in the
structure. See Result Indexes, below, for full details.

Note that the order in which the various calls to SetResult are made will have an impact on fault-find
mode; see Considering Fault-find mode for further details.

Result Indexes

Each Result Element and Result Set can be thought of as having a zero-based index into its parent.

In the example above:
Within the "Channel 1" Test Set, "Amplitude (dBu)" has an index of 0, "THD+N (dB)" has an index of
1, and "Cross-talk (%)" has an index of 2.
Similarly, within the "Channel 2" Test Set, "Amplitude (dBu)" has an index of 0, "THD+N (dB)" has an
index of 1, and "Cross-talk (%)" has an index of 2.
Within the "XLR Input Tests" Test Set, "Channel 1" has an index of 0, and "Channel 1" has an index
of 1.
Within the "Audio Tests" Test Set, "XLR Input Tests" has an index of 0, and "XLR Output Tests" has
an index of 1.
Within the "D/A Converter" Product, "Audio Tests" has an index of 0, and "Other Tests" has an index
of 1.

For example: Taking the Scriptlet for the "XLR Input Tests" Test Set, to write the result for "Cross-talk
(%)" in the "Channel 2" Test Set: "Channel 2" has an index of 1 within "XLR Input Tests", and "Cross-
talk (%)" has an index of 2 within "Channel 2". So to write this result, we must pass parameters of 1, 2
to the SetResult function.

If the test structure changes, it is important that the relevant Scriptlets are
updated to reflect any possible change in these indexes.

5.5 Considering Fault-find mode

When writing Scriptlets to be incorporated into the test structure, you will need to take into account the
fact that the Scriptlets will also be run in Fault-find mode.

Fault-find mode allows you to select an individual Result Element, and run Scriptlets from the test
structure up to the point where a failed result was written to the database. To do this, AutoTestSQL
must stop the currently running Scriptlet at the point where SetResult is called for the offending result.
This means that at the point where SetResult is called, the state of the various items of test apparatus
(the EUT, the dScope, I/O switchers, etc) must be in the correct position to show the failure.

This means that calls to SetResult within each Scriptlet must occur at the point where the equipment
is in the correct state. It would not be good practive to take several measurements involving changes
to the apparatus, storing the values in variables along the way, and then call SetResult several times
to actually store the results in the database. This would mean that at the time that SetResult was
called, sufficient changes may have been made to put the equipment in an entirely different state.
Fault-find mode would not be useful, as the point where it stopped the script may not show the
problem.

27

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

As an example, consider the following part of a test structure:

XLR Input Tests
Channel 1

Amplitude (dBu)
THD+N (dB)

Channel 2
Amplitude (dBu)
THD+N (dB)

where the "XLR Input Tests" Test Set contains a Scriptlet that makes measurements for the four Test
Elements below it in the tree.

The following Scriptlet would make the relevant measurements, and store them in the same order that
they have been entered in the test structure:

' Make measurements...
dScope.CTDetector.CTD_Function = "Amplitude"
dAmplitudeA = dScope.CTDetector.CTD_ChA
dAmplitudeB = dScope.CTDetector.CTD_ChB
dScope.CTDetector.CTD_Function = "THD+N - relative"
dDistortionA = dScope.CTDetector.CTD_ChA
dDistortionB = dScope.CTDetector.CTD_ChB

' Then store the results in the database
SetResult(dAmplitudeA)
SetResult(dAmplitudeB)
SetResult(dDistortionA)
SetResult(dDistortionB)

However, if the amplitude measurement on channel B failed for some reason, Fault-find mode would
run this script until it got to the second SetResult call in this Scriptlet (the one actually writing the
amplitude on channel B). At this point however, the last state of the dScope was measuring THD+N,
so the point at which the script stopped would not give the correct state of the apparatus at the time of
failure.

The appropriate approach in this situation would be to write the results at the same time that they
were read from the dScope:

 ' Make measurements, and store results at
 ' the same time...

dScope.CTDetector.CTD_Function = "Amplitude"
Call SetResult(dScope.CTDetector.CTD_ChA, 0, 0)
Call SetResult(dScope.CTDetector.CTD_ChB, 1, 0)
dScope.CTDetector.CTD_Function = "THD+N - relative"
Call SetResult(dScope.CTDetector.CTD_ChA, 0, 1)
Call SetResult(dScope.CTDetector.CTD_ChB, 1, 1)

In this case, a failure of channel B's amplitude measurement would result in Fault-find mode stopping
the script at the right place, since at the time that the relevant SetResult function is called, the dScope
is in the correct state.

Note that since we are no longer writing the results in the same order that
they are entered in the test structure, we must use SetResult's optional zero-
based index parameters to define which result we are actually writing. See
The SetResult function for full details of these parameters.

28

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.6 Script functions

This section describes some of the built-in functionality available to Product and Test Set Scriptlets.

Certain functions and subroutines with pre-specified names can be included in your Scriptlets. If
present, each one will be called at a certain time during a test - for example, when the test starts or
ends. For more details, see Optional Scriptlet functions.

The AutoTestSQL software exposes some functions via its automation interface. For details of these
functions and how they can be used from within a Scriptlet, see Built-in functions.

The User Script supplied with AutoTestSQL contains some functions provided by Prism Sound that
can be used within your tests. For more details, see Functions in the User Script.

5.6.1 Optional Scriptlet functions

When a test is run, the AutoTestSQL software will look for certain named functions and subroutines in
your Scriptlets and, if they are present, will call them at the appropriate time during the test:

OnTestStart is called when the test is first run.

OnTestFinish is called when the test is stopped (either manually, or because the test has completed).

ValidateSerialNumber is called when the serial number of the Product Instance (EUT) is entered at
the start of a test.

5.6.1.1 OnTestStart

bRet = OnTestStart ()

This function should exist in the Product Scriptlet if it is required. If it is present, it will be called when a
test is first run (after validation of the serial number). It should initialise anything relevant to the test for
this Product.

This function should initialise any global variables, and create any objects that will be used throughout
the test.

It is imperative that any objects created within this function for the duration of
the test are closed correctly in the OnTestFinish subroutine, which is run at
the end of the script.

Parameters

This function has no parameters.

Return value

Your function must return True if it successfully performed any necessary startup, or False otherwise.
Your function can return this value using OnTestStart = True or OnTestStart = False before
exiting the function.

Note that you must return True to allow the test to continue running. If you return False, the test will
stop.

29

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Example

The following example turns dScope Settling on, and minimizes the dScope display.

Function OnTestStart()
' Variables
Dim strMesg ' Used to display messages

 ' Ensure that script uses settling
 dScope.Options.OPT_UseSettlingsFromScripts = True

 ' Minimize the dScope display
 dScope.Display(dScope.DISPLAY_MINIMIZED)

 ' This routine completed successfully
 OnTestStart = True

End Function

5.6.1.2 OnTestFinish

OnTestFinish ()

This subroutine should exist in the Product Scriptlet if it is required. If it is present, it will be called
when a test completes. This will happen whether the test stops automatically or is stopped manually
by using the [Stop] button from Test mode.

This subroutine should be used to clean up any objects that have been used in the script, to ensure
that the test is stopped tidily. It will probably close and delete objects created in OnTestStart, and any
other objects that have been initialised but not closed.

Parameters

This subroutine has no parameters.

Return value

This subroutine has no return value.

Example

The following example shuts down a switcher used in tests.

Sub OnTestFinish()
Dim plStatus ' Status variable from Reset

 ' Shut down switchers
 dSNet.DSNET_Reset(0, False, plStatus)

 ' Tell the Operator it's finished
 MsgBox "Test Finished!"

End Sub

30

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.6.1.3 ValidateSerialNumber

bRet = ValidateSerialNumber (strSerialNum)

This function should exist in the User Script if it is required. If it is present, it will be called when a test
is first run, and the Operator enters the serial number of the Product Instance to be tested. It can
display messages to the Operator if the serial number is invalid.

Parameters

strSerialNum The serial number entered by the Operator.

Return value

Your function must return True if the serial number is valid, or False otherwise. Your function can
return this value by using ValidateSerialNumber = True or ValidateSerialNumber =
False before exiting the function.

Note that you must return True to allow the test to continue running. If you return False, the test will
stop.

Example

The following example validates the serial number, ensuring that it is 10 characters long, and that all
the characters are numbers:

Function ValidateSerialNumber(strSerialNum)
' Vars
Dim cChar ' current character
Dim strMesgTitle ' Message box title

' Init vars
strMesgTitle = "Validating Serial Number..."

 ' Check that the serial number is 10 characters
 If (Len(strSerialNum) <> 10) Then

 MsgBox "Serial number must be 10 characters!", vbOKOnly,
strMesgTitle
 Exit Function
 End If

 ' Check that it's all numeric
 For i = 1 To 10
 cChar = Mid(strSerialNum, i, 1)
 If ((cChar < "0") Or (cChar > "9")) Then
 MsgBox "Serial number must be numeric!", vbOKOnly,
strMesgTitle
 ValidateSerialNumber = False
 Exit Function
 End If
 Next

 ' Otherwise, serial number is valid
 ValidateSerialNumber = True

End Function

31

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.6.2 Built-in functions

Several functions and subroutines are exposed by the AutoTestSQL program and are available for
use within your Scriptlets.

The following functions and subroutines are exposed by the AutoTestSQL application:

SetResult
GetLimits
GetMode
GetProductFamily
GetProduct
GetSerialNumber
GetOperatorName
GetOperatorID
TestStopped
TestFailed
StopTest

5.6.2.1 SetResult

bRet = SetResult (ResultValue [, iIndex1 [, iIndex2 ... iIndex10]])

This function writes a result value to the database.

For a detailed description of how this function should be used, see The SetResult function.

Parameters

ResultValue The result value to write to the database.
This can be a numerical value, a boolean (True or False), or a string.
Which one of these you use will depend on the result type of the
corresponding Test Element (see Test Sets and Test Elements for
details).

iIndex1 .. iIndex10 Optional parameters used to specify which Test Element in the test
structure to set this result for. These parameters are zero-based indexes
into the next level down in the test structure. See The SetResult function
for more details.

Return value

This method returns True if the result was successfully written to the database, or False otherwise.

It may fail because it has been called too many times for the number of Test Elements within the Test
Set containing the Scriptlet, or because the indexes do not correspond to a valid Test Element in the
structure.

32

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.6.2.2 GetLimits

bRet = GetLimits(UpperLimit, LowerLimit [, iIndex1 [, iIndex2 ... iIndex10]])

This function reads the limits for a Test Element from the database.

Scriptlets do not usually have any knowledge of limits for a test, since all this information is stored in
the database and is used automatically by the AutoTestSQL application to work out the status of a
result (see How a result status is calculated). However, under some circumstances, it may be useful
to know this information from within a script. For example, you may want to find out the limits for a
particular test, in order to show visually the limits on a dScope Reading.

This function enables the limits to be extracted from the database. Since limits correspond exactly to
a specific Test Element, AutoTestSQL must be told which Test Element to extract the limits for. This
function works exactly the same way as the SetResult function in this respect. It can be called without
the optional index parameters, in which case it will simply get the limits for the next result in the test
structure (the next result that has not yet been written using SetResult). If the optional index
parameters are used, then they define exactly which Test Element in the test structure to get the limits
for.

Parameters

UpperLimit When this function returns, this variable will contain the upper limit for the
corresponding Test Element.

 This may be a numerical value, a boolean, or a string depending on
the result type of the Test Element. (see Test Sets and Test Elements for
details).

LowerLimit When this function returns, this variable will contain the lower limit for the
corresponding Test Element.

 This may be a numerical value, a boolean, or a string depending on
the result type of the Test Element. (see Test Sets and Test Elements for
details)

iIndex1 .. iIndex10 Optional parameters used to specify which Test Element in the test
structure to get the limits for. These parameters are zero-based indexes
into the next level down in the test structure. See The SetResult function
for more details.

Return value

This method returns True if the limits were retrieved successfully, or False otherwise.

It may fail because it has been called too many times for the number of Test Elements within the Test
Set containing the Scriptlet, or because the indexes do not correspond to a valid Test Element in the
structure.

Example

The following example reads a set of limits from the database and displays them on a dScope
Reading.

' Variables
Dim dUpperLimit
Dim dLowerLimit

' Get the limits for the next result
Call GetLimits(dUpperLimit, dLowerLimit)

33

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

' Get the Reading to set details of
If dScope.GetFirstReadingForResult _

(dScope.RESULT_CTD_CHA) Then
 ' Turn on the bar graph...
 dScope.Reading.RDG_ShowBarGraph = True
 ' Turn limit checking on
 dScope.Reading.RDG_LimitCheckingOn
 ' Show the limits on the bar graph
 dScope.Reading.RDG_MinLimit = dLowerLimit
 dScope.Reading.RDG_MaxLimit = dUpperLimit
End If

5.6.2.3 GetMode

strMode = GetMode()

This function returns the current mode that AutoTestSQL is in. This can only ever be Test mode or
Fault-find mode whilst a script is running.

This function may be useful if different actions need to be taken depending on whether a test is
actually being performed, or whether Fault-finding is in progress. For example, you may have certain
setup routines that involve asking the Operator to visually check some aspect of the EUT. This may
not be relevant when running a section of the test in Fault-find mode, so you could only include these
messages to the Operator during Test mode.

Parameters

This function has no parameters.

Return value

This function returns a string indicating the current AutoTestSQL mode. This will be one of the
following values:

"MODE_TEST" The script is currently running in Test mode.

"MODE_FAULTFIND" The script is currently running in Fault-find mode.

Example

The following example conditionally displays a message if the script is running in Test mode, to make
things quicker for the Operator in Fault-find mode.

' Variables
Dim bLEDsOK ' True if LEDs are OK
Dim strMesg ' Used for message

' Initialise variable - although in Fault-find
' mode it doesn't matter
bLEDsOK = True

' Do LED checks only in TEST mode
If GetMode() = "MODE_TEST" Then

strMesg = "Are all the LEDs lit?"
If MsgBox (strMesg, vbYesNo) = vbNo Then

 bLEDsOK = False
End If

34

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

End If

' Set the result
' Note that we must ALWAYS do this - see note!
SetResult(bLEDsOK)

You must ALWAYS call SetResult whether in Test mode or Fault-find mode,
even though nothing gets written to the database in Fault-find mode, since
the calls to SetResult are where AutoTestSQL checks to see whether Fault-
find mode should stop.

5.6.2.4 GetProductFamily

strName = GetProductFamily()

This function returns the name of the Product Family of the Product that is being tested.

Parameters

This function has no parameters.

Return value

This function returns the name of the Product Family containing the Product being tested.

5.6.2.5 GetProduct

strName = GetProduct()

This function returns the name of the Product being tested.

Parameters

This function has no parameters.

Return value

This function returns the name of the Product being tested.

5.6.2.6 GetSerialNumber

strSerialNum = GetSerialNumber()

This function returns the serial number of the Product Instance being tested, as entered by the
Operator at the start of the test.

35

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Parameters

This function has no parameters.

Return value

This function returns the serial number of the Product Instance being tested.

5.6.2.7 GetOperatorName

strName = GetOperatorName()

This function returns the name of the currently logged in Operator, i.e. the one performing the current
Test or Fault-finding.

Parameters

This function has no parameters.

Return value

This function returns the name of the Operator currently logged in to AutoTestSQL.

5.6.2.8 GetOperatorID

iRet = GetOperatorID()

This function returns the ID of the currently logged in Operator, i.e. the one performing the current
Test or Fault-finding.

Parameters

This function has no parameters.

Return value

This function returns the ID of the Operator currently logged in to AutoTestSQL as an integer value.

5.6.2.9 TestStopped

bRet = TestStopped()

This function returns whether the test has been stopped. This should be unnecessary in your
Scriptlets, as test stopping should be managed automatically by the AutoTestSQL software.

However, there may be instances where your Scriptlets run a loop which may take some time. This
function could be used to determine whether the script has been stopped, and if so, to break out of
the loop.

36

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Parameters

This function has no parameters.

Return value

This function returns True if the test has been stopped, or False if the test is still continuing.

5.6.2.10 TestFailed

bRet = TestFailed()

This function returns whether the test has failed at any point since starting.

Parameters

This function has no parameters.

Return value

This function returns True if any Result Elements in the current test have failed, or False if all Result
Elements have passed so far.

5.6.2.11 StopTest

StopTest()

This function can be used to stop the test. It will stop the currently running Scriptlet, and call the
OnTestFinish function in the Product Scriptlet to finish the test neatly.

Parameters

This function has no parameters.

Return value

This function has no return value.

5.6.3 Functions in the User Script

In addition to Product-specific script code in Product Scriptlets, AutoTestSQL allows functions and
subroutines to be defined for use throughout the entire range of Products in a User Script.

When AutoTestSQL is installed, a default version of this script is copied into the Scriptlets folder (as
defined in the Options dialogue box). It contains two important functions that may be useful within
your tests:

ColourMsgBox works in a similar way to the standard VBScript MsgBox function, and allows an
improved, coloured background to messages to the Operator.

37

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

FailMsgBox uses a similar coloured message box that allows automatic tests of switches, pots etc to
complete without requiring input from the user.

5.6.3.1 ColourMsgBox

iRet = ColourMsgBox (strMesg, vbButtons, strCaption)

This method displays a message box with a coloured background. It can be used to improve the
interface shown to the Operator during tests, rather than using the standard VBScript MsgBox.

Note that the colour, position and size of this message box can be defined using other simple
subroutines. See Associated subroutines below for details.

Parameters

strMesg Message string to display. If strMesg consists of more than one line, you
can separate the lines using a carriage return/linefeed character
combination (vbCrLf) between each line.

vbButtons Value specifying the number and type of buttons to display, the icon style
to use, the identity of the default button, and the modality of the message
box. See the Button values section for allowed values.

strCaption String displayed in the title bar of the dialogue box.

Return value

This function returns the button that was pressed by the user.
See Return values for possible return values.

38

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Button values

The vbButtons argument settings are:

Constant Description

vbOKOnly Display OK button only

vbOKCancel Display OK and Cancel buttons.

vbAbortRetryIgnore Display Abort, Retry, and Ignore buttons.

vbYesNoCancel Display Yes, No, and Cancel buttons.

vbYesNo Display Yes and No buttons.

vbRetryCancel Display Retry and Cancel buttons.

vbCritical Display Critical Message icon.

vbQuestion Display Warning Query icon.

vbExclamation Display Warning Message icon.

vbInformation Display Information Message icon.

vbDefaultButton1 First button is default.

vbDefaultButton2 Second button is default.

vbDefaultButton3 Third button is default.

vbDefaultButton4 Fourth button is default.

vbApplicationModal Application modal; the user must respond to the message box before
continuing work in the current application.

vbSystemModal System modal; all applications are suspended until the user responds to
the message box.

These values are added together to create a value for the vbButtons parameter.

The first group of values (vbOkOnly to vbRetryCancel) describes the number and type of buttons
displayed in the dialogue box; the second group (vbCritical to vbInformation) describes the icon
style; the third group (vbDefaultButton1 to vbDefaultButton4) determines which button is the
default; and the fourth group (vbApplicationModal and vbSystemModal) determines the modality of
the message box. When adding together to create a value for the vbButtons parameter, you should
use only one number from each group.

Return values

Value Description

vbOK OK button was pressed.

vbCancel Cancel button was pressed.

vbAbort Abort button was pressed.

vbRetry Retry button was pressed.

vbIgnore Ignore button was pressed.

vbYes Yes button was pressed.

vbNo No button was pressed.

39

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Associated subroutines

The following simple subroutines can be used to alter the position, size and background and text
colours of the coloured message box:

SetColourMsgBoxPosition(iX, iY)
Sets the position of the coloured message box in pixels from the top left of the screen. The default
position is in the centre of the screen.

SetColourMsgBoxWidth(iWidth)
Sets the width of the message box, in pixels. The default is 300 pixels.

SetColourMsgBoxTextColour(iRed, iGreen, iBlue)
Sets the colour of the text in the message box. See Colours for possible values for the iRed, iGreen
and iBlue parameters.The default values are all 255, i.e. white text.

SetColourMsgBoxBkgndColour(iRed, iGreen, iBlue)
Sets the colour of the background of the message box. See Colours for possible values for the iRed,
iGreen and iBlue parameters. The default values are all 0, i.e. a black background.

SetColourMsgBoxAlignment(iAlignment)
Sets the alignment of the text in the message box. See Alignment for possible values for the
iAlignment parameter. The default alignment is horizontally centred at the top of the message box.

5.6.3.2 FailMsgBox

iRet = FailMsgBox (strMesg, strCaption)

This method displays a message box with a coloured background, with a [Failed] and a [Cancel]
button. This allows simple tests of switches, pots etc. to be performed that can automatically detect
whether a condition has been met without requiring input from the Operator. The Fail button allows
the Operator to manually specify that the test has failed, if the required condition is not reached.

For example, this message box could be used to ask the user to turn on a "mute" switch. This
FailMsgBox would be displayed, and the code would wait for a certain drop in amplitude. If this drop
occurs, then the message box would disappear automatically without further intervention from the
Operator, and the test would continue. In the event of the mute switch not working correctly, the drop
in amplitude would not be detected, but the Operator could manually click the [Failed] button which
would close the message box and continue with the test.

To use the FailMsgBox, you must firstly call the FailMsgBox function with the relevant message text.
Your code must then loop until either the relevant condition has been met, or the FailMsgBox has
been closed (use FailMsgBox_Closed() to determine this). You can then use either the
FailMsgBox_Failed() or FailMsgBox_Cancelled() function to determine whether the required condition
was met, or whether the user clicked on the [Failed] or the [Cancel] button.

 You must always use CloseFailMsgBox to ensure that the message box is closed regardless of
whether the required condition was met, or whether the Operator's button press has already closed it.
See the Example below for an example of how to use the FailMsgBox.

Note that the colour, position and size of this message box can be defined using other simple
subroutines. See Associated subroutines below for details.

40

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Parameters

strMesg Message string to display. If strMesg consists of more than one line, you
can separate the lines using a carriage return/linefeed character
combination (vbCrLf) between each line.

strCaption String displayed in the title bar of the dialogue box.

Return value

This subroutine has no return value. See Closing the FailMsgBox for details of how to find out which
whether the message box was closed automatically, or due to the Operator clicking on a button.

Closing the FailMsgBox

These routines allow you to close the FailMsgBox from your code, and to determine how the
FailMsgBox was closed. For an example of their use, see the Example below.

CloseFailMsgBox()
Use this subroutine to close the FailMsgBox if the required condition has automatically been reached.

FailMsgBox_Closed()
Use this function to determine whether the FailMsgBox has been closed. It returns True if the
message box has been closed (either automatically or due to the Operator clicking on a button), or
False if it is still open.

FailMsgBox_Failed()
Use this function to determine whether the FailMsgBox has been closed due to a failure. It returns
True if the message box was closed due to a click on the [Failed] button, or False if the message box
is still open or has been closed in another way.

FailMsgBox_Cancelled()
Use this function to determine whether the FailMsgBox has been closed due to cancelling. It returns
True if the message box was closed due to a click on the [Cancel] button, or False if the message
box is still open or has been closed in another way.

Associated subroutines

The following simple subroutines can be used to alter the position, size and background and text
colours of the FailMsgBox:

SetFailMsgBoxPosition(iX, iY)
Sets the position of the coloured message box in pixels from the top left of the screen. The default
position is in the centre of the screen.

SetFailMsgBoxWidth(iWidth)
Sets the width of the message box, in pixels. The default is 300 pixels.

SetFailMsgBoxTextColour(iRed, iGreen, iBlue)
Sets the colour of the text in the message box. See Colours for possible values for the iRed, iGreen
and iBlue parameters. The default values are all 255, i.e. white text.

SetFailMsgBoxBkgndColour(iRed, iGreen, iBlue)
Sets the colour of the background of the message box. See Colours for possible values for the iRed,
iGreen and iBlue parameters. The default values are all 0, i.e. a black background.

41

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

SetFailMsgBoxAlignment(iAlignment)
Sets the alignment of the text in the message box. See Alignment for possible values for the
iAlignment parameter. The default alignment is horizontally centred at the top of the message box.

Example

'***
' Name : SwitchOff
' Description: Function to determine whether a
' switch has been muted
' Params : eChannel Which channel
' : dLowerLimit Limit to detect when muted
' : strMsg Message to display
' : strCaption Title of message
'***
Function SwitchOff(eChannel, dLowerLimit,

 strMsg, strCaption)
' Variables
Dim dValue ' Amplitude value

 ' Get the channel
 If eChannel = CHANNEL_B Then
 dValue = dScope.SignalAnalyzer.SA_ChBRMSAmpl
 Else
 dValue = dScope.SignalAnalyzer.SA_ChARMSAmpl
 End If

 ' Stop when Ampl less than limit
 bAutoStop = (dValue <= dLowerLimit)

 ' Show the FailMsgBox
 FailMsgBox strMsg, strCaption

 ' Wait until 'Fail' pressed, or switch muted
 While ((Not bAutoStop) And _

(Not FailMsgBox_Closed()))

 ' Re-read the amplitude
 If eChannel = CHANNEL_B Then
 dValue = dScope.SignalAnalyzer.SA_ChBRMSAmpl

 Else
 dValue = dScope.SignalAnalyzer.SA_ChARMSAmpl
 End If
 bAutoStop = (dValue <= dLowerLimit)
 Wend

 ' Close the box (in case it wasn't
 ' done automatically)
 CloseFailMsgBox()

 ' Set this result - True if signal muted,
 ' False if Operator selected Failed
 SwitchOff = Not FailMsgBox_Failed()

End Function

42

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.6.3.3 Colours

Various methods in the User Script allow you to set colours by passing a red, green and blue
component. These combine to make a single colour.

Here are some examples of how these components combine to make common colours:

Colour Red Green Blue

White 255 255 255

Black 0 0 0

Red 255 0 0

Green 0 255 0

Blue 0 0 255

Magenta 255 0 255

Yellow 255 255 0

Cyan 0 255 255

Light Grey 192 192 192

Dark Grey 128 128 128

Orange 255 128 0

For further colours, you can use the windows colour palette. This palette is used in several programs,
including the dScope, and can be accessed by right-clicking on the Trace legend, selecting "Change
Trace colour" and clicking on "Define Custom Colours". This will give you a palette of colours; clicking
on any one of these will show you the red, green and blue components of that colour.

5.6.3.4 Alignment

Some functions in the User Script allow you to set the alignment of text in a control. For full details of
this, see the manual for the ScriptDlg ActiveX Control that is provided with the dScope software.

Alignment of text can be a combination of a horizontal alignment and a vertical alignment. (Note that if
more than one horizontal alignment is specified, the first one from the list below will be used. Similarly,
if more than one vertical alignment is specified, the first one will be used).

Values

alignLeft 1 Sets the message box text to be horizontally aligned to the left of the
control.

alignHCentre 2 Sets the message box text to be horizontally aligned in the centre of
the control.

alignRight 4 Sets the message box text to be horizontally aligned to the right of the
control.

alignTop 8 Sets the message box text to be vertically aligned at the top of the
control.

alignVCentre 16 Sets the message box text to be vertically aligned in the centre of the
control.

alignBottom 32 Sets the message box text to be vertically aligned at the bottom of the
control.

43

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

5.7 Writing and debugging scripts

This section provides information on writing and debugging your scripts in AutoTestSQL.

To find out information on choosing a text editor for your scripts, see Choosing a script editor.

For some tips on writing scripts, see Writing scripts.

For some tips on debugging the scripts that you have written, see Debugging scripts.

For a list of some common problems encountered when writing scripts for AutoTestSQL, see
Common script problems.

For an overview of how to make your scripts as reusable as possible, see Reusability of scripts.

5.7.1 Choosing a script editor

In Setup mode, clicking the [View/Edit] button when a Scriptlet is associated with a Product or Test
Set will result in the Scriptlet being opened in Notepad. This is a very simple text editor and does not
provide any colouring of VBScript or dScope keywords, and so relies very much on the script writer
not making any mistakes.

A much better option is to use an editor which can be made aware of VBScript syntax. There are
several freeware editors available that can be found from a quick search on the internet. An example
is the Crimson Editor, which can also be set up to recognise dScope keywords as well as standard
VBScript keywords - visit www.crimsoneditor.com for more details.

Using the dScope script editor

The dScope software has a built-in script editor that can be used to write Automation scripts for the
dScope. It can also be used to write simple Scriptlets to attach to Products and Test Sets. It can be
accessed from the "Edit script" option on the dScope software's Automation menu.

The dScope script editor displays a tree of the available properties and methods, allowing scripts to be
created quickly and easily by dragging items across from the tree into the script. The relevant code is
inserted without the writer needing exact knowledge of the required syntax.

This script editor has the advantage that any scripts written in this way can be run from within the
dScope, thus allowing writing and testing of scripts before using the scripts within AutoTestSQL.

The disadvantage of this editor is that since it is built in to dScope, it does not prefix the dScope's
properties and methods with "dScope." However this can be worked around by inserting the following
code at the top of the script in the Script editor:

Dim dScope
Set dScope = CreateObject("dScope.Application")

Using this code will mean that any items dragged into the script from the tree of properties and
methods will be prefixed correctly with "dScope.".

http://www.crimsoneditor.com

44

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Note that most Scriptlets will also use the SetResult function. Since this function is built in to
AutoTestSQL, it will not be recognised by the dScope and so you will need to insert a dummy version
at the top of the script if you wish to use the dScope to run and debug these Scriptlets as well. The
same applies to any other functions that you will need to use from within your Scriptlets. A simple
example of this function is shown below; note that this shows the value passed to it and can be used
for simple debugging purposes:

' Dummy SetResult function
Function SetResult(Val)
 MsgBox "SetResult called with a value of " & Val
 SetResult = True
End Function

You will need to ensure that any code added to the script in this way is
removed before the Scriptlet is used with AutoTestSQL.

5.7.2 Writing scripts

When writing scripts, there are some steps that you can take to make life easier for yourself and
ensure that any script problems are easier to debug. A discussion of programming principles is
beyond the scope of this manual; however some ideas are outlined below:

Readability of Scriptlets
It is important to make your Scriptlets as readable as possible, to enable you to see easily how the
code works. This will be invaluable if you need to come back to code at a later date and change it.

Code style
It is often a good idea to have a particular style of coding, and stick to that style throughout your
Scriptlets - for example, how you indent lines, how you comment functions and subroutines, etc.
should stay consistent throughout the code.

Comments
This is probably the single most important part of writing good Scriptlets. It is imperative that any code
you write is well commented, to enable you to see at a glance what a piece of code is supposed to do
without having to work it out from the VBScript itself. It also enables anyone else who looks at the
code to see easily what it does - a must for projects involving more than one programmer.

Constants
If you have numbers or strings in your script that are used throughout the script, you should consider
making them into constants. This means that they can be defined once at the start of the script, and
then reused throughout. If you decide to change the value of the constant, it only needs to be changed
in one place.
For example, you may decide that you want all your messages to the Operator to have a certain
caption: "My Tests". Rather than type this text as the third parameter to MsgBox or ColourMsgBox,
you would simply define a constant at the top of the script:

Const strMessageTitle = "My Tests"
and then use this through the code:

ColourMsgBox("Message...", vbOKOnly, strMessageTitle)
If at any point in the future you decide to change this caption, it is a simple matter of changing it in one
place, rather than trawling through the script to find all the places that you display messages to the
Operator.

Variable naming
When using variables throughout your script, ensure that they have sensible and meaningful names.
You can also use a naming system such as Hungarian notation, where the type of the variable
(boolean, integer, etc) is part of the variable name.

45

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Option Explicit
It is a good idea to always use the VBScript statement Option Explicit at the top of a script. This
forces you to declare any variables that you will use in the script, and means that you are less likely to
use an incorrect variable name by spelling it wrongly later in the script. If you do not do this, then a
variable that has not been defined will always be treated as a zero. This can lead to problems that are
very difficult to find later on.
AutoTestSQL includes this statement by default in the AutoTest.vbs script that is loaded at the
beginning of every test. We recommend that it is not removed.

Reusability
Try to keep your code as reusable as possible, by putting common operations into functions or
subroutines. For more details on how to make your AutoTestSQL Scriptlets reusable, see
Reusability of scripts.

Checking variables
It is a good idea to check values when they are passed to a function or subroutine, to see if they are
valid. This enables a Scriptlet to throw up a message when invalid values are used, and ensures that
the Operator knows what the problem is. It should mean that most potential problems are trapped
early on in the development process.

Function CreateFolder(strFolderName)
 ' Check name passed
 If strFolderName = "" Then
 MsgBox "Invalid folder name passed to CreateFolder!"
 CreateFolder = False
 Exit Function
 End If

 ' Create the folder
 ...

CreateFolder = True
End Function

5.7.3 Debugging scripts

It is very unusual to write a Scriptlet and have it work correctly first time! If it does not, then you will
need to do some debugging to work out where the problem lies. A full discussion of script debugging
is beyond the scope of this manual; however this section gives some helpful ideas on how to start
looking for problems.

Types of error

In general there are three possible kinds of error that can occur when writing scripts. See
Common script problems for some examples of these.

Syntax errors
These kinds of errors are simple mistakes in the Scriptlet where the syntax of the VBScript is
incorrect. These will usually be picked up when you first run the Scriptlet, since the error in the code
will mean that it cannot run. An error message will usually be shown, giving the line number in the
script where the problem has occurred.

Run-time errors
These are errors where the syntax of the code is correct, and the Scriptlet runs, but encounters an
error during running due to an incorrect operation being performed. For example, "Division by zero" is
a common run-time error - where the script tries to divide by a variable which contains the number 0.
Again, an error message will usually be shown here with the offending line number.

46

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Incorrect operation
These are often the most difficult errors to find, since they do not result in error messages. The script
simply does not work correctly. See some of the simple debugging techniques below for some ways
of finding these problems.

Simple debugging techniques

This section describes some simple techniques that can be used to locate bugs:

Using line numbers
Error messages usually give a line number where the error has occurred. It is a simple matter to use a
text editor to move directly to this line number and look for the problem.
In some cases, the line number may not actually be the position of an invalid piece of code, but rather
where the script engine expects the valid piece of code to be. For example, if you have missed an
"End If" from the end of an "If ... Then" statement, the line number will probably not bring up
the line where you would expect this statement to be, but would be the next piece of code in the
Scriptlet. This is because it is only when it gets to the next bit of code that the script realizes that it's
not the "End If" that it is expecting.

Take note of error messages
Most syntax errors and run-time errors will give you an error message when they occur. Occasionally
this is an obscure message, but usually it is sensible and helps to explain the problem. The
Documentation on Windows Script Technologies, available from Microsoft, contains some useful
information about VBScript run-time and syntax errors, and some ways of solving them.

Message boxes
A simple way of working out where a Scriptlet is going wrong is to insert simple "MsgBox" commands
at intervals throughout a Scriptlet, displaying appropriate information to the Operator. For example, if
the value of a variable is changing to an incorrect value, you could insert message boxes displaying
the value of the variable at various points in the code. It should be a simple matter to track down the
point at which it is going wrong.

 Don't forget to remove these message boxes once you find the problem!

Breaking down the problem
Finding bugs is often easier if you break the problem down. If you have a problem in a Scriptlet that
performs several tasks, go through each of the tasks individually and solve the problems in each task
separately. Even within an individual task, you can break the problem down until you reach the
solution.
For example, if you have a result that keeps failing, you could ask yourself:
- What value is actually being passed to the SetResult function? (Insert a MsgBox to find out). Is this
value correct?
- If not, then where is the result coming from?
- When the value is read from the dScope, is it correct at this point?
- If not, then is the dScope set up correctly?

Talk yourself through the problem
If you have a problem that is proving difficult to solve, it can sometimes be useful to just look at the
code, and step through it line by line. At each step, make sure you know what the value of each
variable should be, and how each constituent part of the test (the dScope, the EUT, any
I/O switchers) are set up. Sometimes just talking through the code as if you are telling someone else
how it works can help you see the problem instantly!

5.7.4 Common script problems

The Documentation on Windows Script Technologies, available from Microsoft, contains some useful
information about VBScript run-time and syntax errors, and some ways of solving them. This should
be used if you require a comprehensive reference. Some problems that do not produce error
messages are listed below:

http://download.microsoft.com/download/7/c/b/7cbde286-799e-4d83-bf5b-a9a0d8c9df84/scrdoc56en.exe
http://download.microsoft.com/download/7/c/b/7cbde286-799e-4d83-bf5b-a9a0d8c9df84/scrdoc56en.exe

47

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Hanging scripts

If the script stops responding, it may well be stuck in a loop and unable to finish. Check any While ...
Wend loops and ensure that the relevant variable is being changed within the loop to enable it to finish
at some point.
For example, the following code will cause the script to stop responding, since the value of the loop
variable i is never incremented:

 i = 1
 While i <= 8
 ' Change the switcher channel
 IOSwitcher.SWITCHER_ExclusiveChannel "Inputs", i
 ' Make the measurements
 MeasureInputs()
 Wend

Qualifying dScope constants

A common cause of problems in AutoTestSQL is forgetting to qualify dScope constants using the
"dScope." prefix.

If you forget to qualify a dScope property or method, this will usually be picked up when the script is
run. You will get a "Variable is undefined" error if the Option Explicit statement is used, or an
"Object required" error otherwise.

For constants however, VBScript has the annoying habit of treating as zero those for which it cannot
find a definition. This may result in an error that is exceedingly difficult to find, for example setting the
dScope's Analogue Outputs to "Unbalanced":

 dScope.AnalogueOutputs.AO_Output = AO_OUTPUT_UNBAL

This code will treat the AO_OUTPUT_UNBAL variable as zero, since it is not prefixed with the "dScope."
prefix. However, zero is actually a valid value for the Analogue Outputs' AO_Output property, and in
fact represents a Balanced output - the opposite of the intended effect!

Using the dScope script editor to write AutoTestSQL Scriptlets will cause this
prefix to be automatically added when constants are inserted into the script.
See Using the dScope script editor for details.

5.7.5 Reusability of scripts

It is important when writing Scriptlets for AutoTestSQL to ensure that they are as reusable as
possible. This is achievable using functions and subroutines, and also by re-
using scripts between Products.

Functions and subroutines

Any group of operations that may be used more than once should be put into a function or a
subroutine. This can then be called from somewhere else in the code to perform the same operations.
This means that if a change is required to this group of operations, a single change is required to
affect everywhere that it is used, rather than having to change each instance in the code separately.

Note that functions and subroutines that are available to all Test Set Scriptlets must be defined in the
Product Scriptlet (for reuse within the tests for this Product) or in the User Script (for reuse in any test
for any Product). If a function or subroutine is defined in a Test Set Scriptlet, it will only be available
throughout that Scriptlet, and not in any others.

48

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Reusability of scripts between Products

Under some of circumstances, the same Scriptlets may be able to be reused between Products. This
is particularly likely between Products in the same Product Family. For example, you may have a
range of Products where the basic functionality is the same, but the number of channels is different
for each Product. You could use the same Scriptlets for some of the tests; within each Scriptlet you
could use the GetProduct function to determine which Product is currently being tested, and then loop
through the channels the required number of times for this Product.

Operation reference

Part

6

51

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

6 Operation reference

The operation reference section provides detailed descriptions of all parts of the AutoTestSQL
software.

The main sections are as follows:

Menus Contains details of all the menu options in AutoTestSQL.

Toolbar Contains a description of the functions available on the
AutoTestSQL Toolbar.

Setup mode Describes Setup mode, and how it is used to set up the test
database.

Test mode Describes how Test mode is used to perform tests.

Fault-find mode Gives details of how Fault-find mode can be used to pin-point
and resolve failures in tests.

Options Describes the Options dialogue box, and the customizable
areas of AutoTestSQL.

AutoTestSQL security Describes how security options can be used to restrict access
to parts of the AutoTestSQL system for certain Operators.

6.1 Menus

The following menu options are available in the AutoTestSQL software:

File menu

Print Prints the current page. This is context-sensitive and depends on the
current mode of operation:
Setup mode: Not available.
Test & Fault-find mode: Prints out the test report for the current Test
Session.

Print Preview Allows viewing of the current details as they would appear on a printer.
It is context-sensitive as for the Print option, above.

Print Setup... Allows specification of printer details.

Exit Exits the AutoTestSQL application.

Edit menu

Undo This option is currently unavailable in AutoTestSQL.

Cut Deletes the currently selected text or object and copies it to the clipboard.

Copy Copies the currently selected text or object to the clipboard.

Paste Inserts the text or object in the clipboard at the current cursor position.

52

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

View menu

The View menu allows the basic elements of the AutoTestSQL user interface to be displayed or
hidden as required.

Toolbar Toggles the AutoTestSQL Toolbar on and off.

Status bar Toggles the Status bar on and off.

Tools menu

Options... Opens the Options dialogue box, from which you can change various
operating options for AutoTestSQL.

Change Operator... Allows the currently logged-on Operator to be changed.

Help menu

Help Contents Accesses the contents page of the on-line help file.

Help Index Accesses the index page of the on-line help file.

Help Search Accesses the search page of the on-line help file.

About AutoTestSQL... Displays a box describing the current AutoTestSQL software release.

6.2 Toolbar

The main Toolbar of the AutoTestSQL application consists of two parts:

Standard buttons

Cut Deletes the currently selected text or object and copies it to the clipboard.

Copy Copies the currently selected text or object to the clipboard.

Paste Inserts the text or object in the clipboard at the current cursor position.

Print Prints the current page. This is context-sensitive and depends on the current
mode of operation:
Setup mode: Not available.
Test & Fault-find mode: Prints out the test report for the current Test Session.

Print Preview Allows viewing of the current details as they would appear on a printer.
It is context-sensitive as for the Print option, above.

53

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

AutoTestSQL mode buttons

These buttons switch between the various modes of AutoTestSQL:

Test Enters Test mode, to allow tests to be run and results to be gathered.

Fault-find Enters Fault-find mode, which allows the cause of a failure to be pin-pointed
and details logged to the database.

Setup Enters Setup mode, allowing entry or editing of new Products, Operators and
Tests.

Reports Runs the application used to product management reports, as specified in the
Options dialogue box.

6.3 Setup mode

AutoTestSQL's Setup mode is used to initially define the Products that will be tested, and the tests
that will be performed on them. It allows a hierarchical structure of tests to be set up for each Product,
and these tests to be associated with Scriptlets that will be used to run the tests. It also allows setup
of the different Operators that will use the system, and allows specification of the different tasks that
each one can perform.

The screen in Setup mode consists of a hierarchical tree of items on the left hand side, together with
a context-sensitive pane on the right containing the details of the currently selected tree item:

54

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The following sections describe various operations possible in Setup mode:

Setting up Products
Setting up tests
Setting up Operators

6.3.1 Setting up Products

Before you can set up Tests to be done, you must have set up the Products that are to be tested. This
is done from Setup mode. Note that you must have an adequate security level to use Setup mode;
see AutoTestSQL security for details.

Once in Setup mode, the left-hand pane of the AutoTestSQL screen shows the current Products,
Tests and Operators. When you first start using AutoTestSQL, there will only be two entries in this list:
Products and Tests, and Operators. You will set up new Products under Products and Tests.

Note that if the current Operator's security level is not high enough, then the list of Products and Tests
will not be available.

Product Families

Products are arranged in categories called Product Families, and you will need to create at least one
Product Family before you can enter any Products. To do this, right-click on the Products and Tests
item in the tree. You will then see the following options:

New Product Family Select this option to create a new Product Family. This Product Family
will be created in the tree, and the right-hand side of the screen will
change to show the details of that Product Family. For full details of
entering and editing a Product Family, see
Entering/editing Product Family details.

Products

Once you have a Product Family in the tree, you can right-click on it to bring up the following menu:

Delete Product Family Select this option to delete the currently selected Product Family.
Note that if the Product Family contains any Products, and any of the
Products have Test Sets, then deletion will be disallowed; You must
remove the Test Sets first. See Setting up tests to find out about
deleting Test Sets.

New Product Select this option to create a new Product. This Product will be created
within the selected Product Family in the tree, and the right-hand side of
the screen will change to show the details of that Product. For full
details of entering and editing a Product, see
Entering/editing Product details.

55

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

If you right-click on a Product in the tree, you will be presented with the following menu:

Delete Product Select this option to delete the currently selected Product.
Note that if the Product contains any Test Sets, then deletion will be
disallowed; You must remove the Test Sets first. See Setting up tests to
find out about deleting Test Sets.

New Test Set This option allows you to set up Tests for the selected Product. See
Setting up tests to find out about setting up Tests for a Product.

Manipulating Products and Product Families

It is not currently possible to move or copy Products from one Family to another.

6.3.1.1 Entering/editing Product Family details

In Setup mode, when a new Product Family is created, or an existing Product Family is selected, the
following details appear in the right-hand pane of the AutoTestSQL main window:

Fields and controls

Name Specifies the name of the Product Family. This is set to "New Product Family"
by default.
This name cannot contain any backslash (' \ ') characters.

6.3.1.2 Entering/editing Product details

In Setup mode, when a new Product is created, or an existing Product is selected, the following
details appear in the right-hand pane of the AutoTestSQL main window:

56

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Fields and controls

Name Specifies the name of the Product. This is set to "New Product" by default.
This name cannot contain any backslash (' \ ') characters.

Scriptlet for Product This specifies an optional Scriptlet containing code that can be associated
with this Product. See Product and Test Set Scriptlets for full details.

View/Edit Allows you to view or edit the Scriptlet associated with this Product.

The Note below the 'Scriptlet for Product' field is a reminder about the
differences between a Scriptlet associated with a Product, and the Scriptlets
associated with the individual Test Sets for the Product. See the section on
Product and Test Set Scriptlets for a full explanation of these differences.

6.3.2 Setting up tests

Before you can set up tests to be done for a Product, you must have set up some Products to be
tested. See Setting up Products to find out more about setting up Products for testing.

Once you have at least one Product in the setup, you can begin to enter test details. Note that you
must have an adequate security level to use Setup mode; see AutoTestSQL security for details.

It is important that you have considered the structure of your tests in some
details before entering them into AutoTestSQL. Please see the sections on
Test structure and Test Scriptlets before entering details of any tests, as these
will give you a better idea about designing your test and script structure.

Tests are set up under Products in Setup mode. Note that individual Test Elements are grouped
within Test Sets; these Test Sets can be hierarchically arranged within other Test Sets.

Test Sets

To enter a new Test Set, simply right-click on the Product or the Test Set that you wish to enter the
Test Set within. You will see a menu with the available options (Note that if you have clicked on a
Product, only the New Test Set option will be available; if you have clicked on a Test Set, all the
following options will be shown).

57

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Move Test Set up Select this option to move the currently selected Test Set up one place
in the tree, within its parent Test Set or Product. This option will be
disabled if the currently selected Test Set is the first one under its
parent in the tree.

Move Test Set down Select this option to move the currently selected Test Set down one
place in the tree, within its parent Test Set or Product. This option will
be disabled if the currently selected Test Set is the last one under its
parent in the tree.

Copy Test Set Copies the currently selected Test Set and places the copy at the
bottom of the list of Test Sets within the current parent. The Test Set
will be named "Copy of <name>", where <name> is the name of the
currently selected Test Set.

Delete Test Set Deletes the currently selected Test Set. You will be asked to confirm
deletion before it occurs.

 If this Test Set has been used in any Tests, it will not actually be
deleted from the database, since its details are still required by any
attached Result Sets. However, it will be lost from the tree of Test Sets
and cannot be recovered.
Please see Notes about moving and deleting tests, below, for additional
information.

New Test Element Select this option to create a new Test Element within the selected
Product or Test Set. A new Test Element will be created in the tree, and
the right-hand side of the screen will change to show the details of that
Test Element. For full details of entering or editing a Test Element, see
Entering/editing Test Element details.

New Test Set Select this option to create a new Test Set within the selected Product
or Test Set. A new Test Set will be created in the tree, and the right-
hand side of the screen will change to show the details of that Test Set.
For full details of entering or editing a Test Set, see
Entering/editing Test Set details.

Test Elements

Once you have a Test Element in the tree, you can right-click on it to bring up the following menu:

Move Test Element up Select this option to move the currently selected Test Element up one
place in the tree, within its parent Test Set.
This option will be disabled if the currently selected Test Element is the
first one in its Test Set.

Move Test Element down Select this option to move the currently selected Test Element down
one place in the tree, within its parent Test Element or Product.
This option will be disabled if the currently selected Test Element is the
last one in its Test Set.

Copy Test Element Copies the currently selected Test Element and places the copy at the
bottom of the list of Test Elements within its parent Test Set. The Test
Element will be named "Copy of <description>", where <description> is
the description of the currently selected Test Element.

Delete Test Element Deletes the currently selected Test Element. You will be asked to
confirm deletion before it occurs.

 If this Test Element has been used in any Tests, it will not actually
be deleted from the database, since its details are still required by any
attached Result Elements. However, it will be lost from the tree of Test
Sets and Test Elements and cannot be recovered.
Please see Notes about moving and deleting tests, below, for additional
information.

58

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Manipulating Test Sets and Test Elements

Test Sets and Test Elements can be moved or copied within the tree. This is particularly useful, for
example, for audio devices with several similar channels. The first channel can be set up in the tree,
and then subsequent channels can simply be copied from the first channel, making the process of
setting them up much easier.

Test Sets and Test Elements can be copied within a parent Product or Test Set as described above
(i.e. by right-clicking on the item and selecting the "Copy..." menu option). It is also possible to move
or copy a Test Set or Test Element by dragging it with the mouse into a new parent. Holding down the
<Ctrl> key whilst dragging will cause the item to be copied, otherwise it will be moved. You will be
asked to confirm the moving or copying before it happens.

During dragging this way, the cursor will change to one of the following:

Copy Move

Notes about moving and deleting tests

If you wish to restructure some tests, it is worth bearing in mind how this will affect existing tests.
Existing sets of results rely on the sets of test details that they were created from to get certain
information - for example, the name of a Test Set, or the limits applied at test time. Under some
circumstances, changing the test structure can adversely affect the results of existing tests.

As an example of this, consider a report that you may wish to produce that gives the range of results
for a particular test - for example, the range of results for a "Distortion" test. The report would ask the
database for all the results linked to a certain Test Element. If you were to move this Test Element in
the test hierarchy, or delete it and then re-create a similar test somewhere else, then the range of
results returned by the report would be different for all the tests done before the change, and all the
tests done after the change.

For a detailed discussion of the AutoTestSQL database structure, see The AutoTestSQL database.

Once you have started entering test details in the database, it is important to
back up the database regularly. To find out how to back up the database, see
Backing up and restoring the database.

6.3.2.1 Entering/editing Test Set details

In Setup mode, when a new Test Set is created, or an existing Test Set is selected, the following
details appear in the right-hand pane of the AutoTestSQL main window:

59

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Fields and controls

Name Specifies the name of the Test Set. This is set to "New Test Set" by
default.
This name cannot contain any backslash (' \ ') characters.

Scriptlet for Test Set This specifies an optional Scriptlet containing code that can be associated
with this Test Set. See Product and Test Set Scriptlets for full details.

View/Edit Allows you to view or edit the Scriptlet associated with this Test Set.

The Note below the 'Scriptlet for Test Set' field is a reminder about the
differences between a Scriptlet associated with a Test Set, and the Scriptlets
associated with the Products themselves. See the section on
Product and Test Set Scriptlets for a full explanation of these differences.

6.3.2.2 Entering/editing Test Element details

In Setup mode, when a new Test Element is created, or an existing Test Element is selected, the
following details appear in the right-hand pane of the AutoTestSQL main window:

Fields and controls

Description Specifies the description of the Test Element. This is set to "New Test
Element" by default.
If this Test Element is to have a numerical value, then you should define
the unit that this numerical value represents as part of the test description
(for example, "Amplitude (dBu)".
This description cannot contain any backslash (' \ ') characters.

Result type This specifies the type of result. See Result types below for a list of
possible result types.

Use ... decimal places This specifies how many decimal places to use when displaying this Test
Element's result in the list of results. This can be a number between 0 and
15.

Upper Limit This specifies the upper limit for this Test Element. If the result for this Test
Element is above this limit, it will be stored as Failed in the database.
See How a result status is calculated for further details.

Lower Limit This specifies the lower limit for this Test Element. If the result for this Test
Element is above this limit, it will be stored as Failed in the database.
See How a result status is calculated for further details.

60

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Result types

The following result types can be selected for a Test Element:

Numerical value The result is a double-precision number.
The corresponding Result Element's value must be between the Upper
and Lower Limits to be classed as Passed; otherwise it is classed as
Failed.

Pass/Fail The result can only have one of two values: a pass or a failure.
From a Scriptlet, the result can be set by passing True or False, or a string
representing a pass or failure (for example, "Pass"/"Fail", or "Yes"/"No").
See the reference for SetResult for full details.
The Upper and Lower Limit are irrelevant for this type of result, as the
status is implicit in the result value.

String The result is a string.
If neither an Upper or Lower limit is specified, this result will be classed as
Non-critical and will show up as neither a pass or failure in the test results
(i.e. its status will not affect the overall status of the test).
If an Upper or Lower limit can be specified, the result will be classed as
Passed if it matches one of the limit strings specified, or Failed if at least
one limit is specified, and the result does not match it.

For full details of how a result's status is calculated for each of these result types, see
How a result status is calculated.

6.3.3 Setting up Operators

Setup mode allows you to enter details of all the Operators that will use AutoTestSQL. This allows you
to keep track of who has performed tests and who has entered fault details in Fault-find mode.

In setup mode, the list of Operators is available under the list of Products and Tests:

Note that if the current Operator's security level is not high enough, then the list of Operators will not
be available.

Note that there is always an Administrator Operator, built into AutoTestSQL, which has full access to
any parts of the system. Further details of this Operator can be found under
The Administrator Operator in the AutoTestSQL security section of this manual.

Setting up Operators is similar to setting up new Products. To add an Operator, simply right-click on
the Operators item in the tree, and you will see a menu with the following options:

New Operator Select this option to create a new Operator. This Operator will be
created in the tree, and the right-hand side of the screen will change to
show the details of the new Operator. For full details of entering and
editing an Operator, see Entering/editing Operator details.

Once you have one or more Operators in the list, you can right-click on an Operator to bring up a
menu with the following options:

61

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Delete Operator Deletes the currently selected Operator. You will be asked to confirm
deletion before it occurs.

 If this Operator has performed any Test Sessions, then deletion
will be disallowed.

The 'Delete Operator' menu option is not available for the built-in Administrator
Operator.

6.3.3.1 Entering/editing Operator Details

In Setup mode, when a new Operator is created, or an existing Operator is selected, the following
details appear in the right-hand pane of the AutoTestSQL main window:

Fields and controls

Name Specifies the name of the Operator. This is set to "New Operator" by
default.
This description cannot contain any backslash (' \ ') characters.

ID This specifies a unique ID number for this Operator. When a list of
Operators is available, for example in the Login dialogue box, this number
can be typed as a quick way of entering the current Operator, rather than
having to select the Operator from a list.

This Operator must
change password at
next login

If this box is checked, then the Operator must change their password the
next time they log in to AutoTestSQL. This allows an Administrator to force
Operators to change their password for security reasons.
This option is checked by default, to force all Operators to enter a
password when they first start using the system. This is because
passwords are blank by default.

This Operator can: Specifies a list of possible operations whose access can be restricted to
different Operators. See the list of allowed operations for full details.
To allow an option, check the option in the list. To stop this option being
available to this Operator, uncheck the box.

 This list is disabled for the built-in Administrator Operator, and all the
options are checked. This is to ensure that there is always at least one
Operator on the system with full access.

62

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Allowed operations

Edit Options settings Allows access to the Options dialogue box on the Utility menu, which
allows changing of certain operating parameters for AutoTestSQL.

Perform Tests Allows the Operator to perform tests using Test mode.

Perform Fault-finding Allows the Operator access to Fault-find mode.

Access Setup mode Allows the Operator access to Setup mode.

View management
reports

This allows the Operator to access management reports from the Reports
button.

Set up Products and
Tests

This allows the Operator to set up Products and Tests in Setup mode.

Set up Operators This allows the user to set up Operators in Setup mode.

6.4 Test mode

Test mode is the main part of AutoTestSQL. It is the mode that will be most commonly used on a
day-to-day basis, and allows you to run tests on a Product at the click of a button.

The screen in Test mode consists of a series of fields on the left hand side, and a hierarchical tree of
results on the right. This tree of results corresponds to the tests that are performed on the selected
Product, and is filled in dynamically as tests are performed.

63

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The following sections describe the operation of Test mode:

Fields and controls
Tree of results
Running a test
Stopping a test
Test completion
The Test Report

Once you have started to run tests and have some test results in the database, it
is important to back up the database regularly. To find out how to back up the
database, see Backing up and restoring the database.

6.4.1 Fields and controls

In Test mode, the left-hand side of the screen contains the various fields and controls available:

64

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The following is a list of the available fields and controls, and their function:

Product Family Allows selection of the Product Family of the Product that will be tested.
By default, this will be the last Product Family used.
When the Product Family is changed, the Product list (see below) will be
refilled with the Products in the new family.

Product Allows selection of the Product to be tested. By default, this will be the last
Product used.
When a new Product is selected, the Tree of results will be updated to
reflect the structure of tests to be done on this Product.

Operator Shows the current Operator logged in to AutoTestSQL.
Use the Change button to log in as a different Operator (or the Change
Operator option on the Utility menu).

Change >> Allows the current Operator to be changed. This means that a different
Operator can log in to perform a test, without having to exit from the
AutoTestSQL application.

Run Runs a test.
This will run the various Scriptlets for this Product, log the results to the
database, and display the results in the Tree of results on the right-hand
side.

Stop Stops the currently running test.

When the current test
fails...

Allows selection of the action to take when a failed result is detected. This
can be to continue with the test, stop the test, or ask the Operator whether
they would like to re-test this Test Set. See Re-testing failures for further
details.

Show ... levels This determines how many levels to show in the Tree of results. Since
there will usually be a lot of hierarchically-stored results in the tree, it is
more likely that individual branches of the tree will be opened and closed
when necessary.
Note that it may take some time to open the Tree of results, of there are a
lot of Test Sets at the required level.

Some of these fields can be enabled or disabled depending on whether a test
is currently running. For example, the [Stop] button is disabled unless a test is
running, and the [Run] button is disabled whilst a test is running.

65

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

6.4.2 Tree of results

In Test mode, the right-hand panel of the screen contains the hierarchical tree of tests and results for
the currently selected Product:

This tree initially contains the tree of Test Sets and Test Elements for the selected Product. As the
test is run, corresponding Result Sets and Result Elements will be created in the database. When this
happens, the display will be updated with the status of the results.

Note that when a Scriptlet is run, all the Result Sets and Result Elements below it in the hierarchical
structure will be created. When this happens, all Result Sets and Result Elements will be shown with
a status of (...) appended. This means an unknown status, i.e. the Result exists in the database but
has not yet been marked as a pass or a failure.

As the Scriptlet runs, the status of these results will be updated in the tree of results. A failed result
will be shown in red, with (FAILED) appended to it. A passed result will be shown in green, with
(Passed) appended. Any non-critical results will be updated with the value of the result; the (...) will be
removed and the display colour will not be changed.

For full details on how Product and Test Scriptlets are used to run tests, and how this affects when the
results are created in the database, see Test Scriptlets.

66

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

6.4.3 Running a test

Before running a test, you will need to have at least one Product set up in AutoTestSQL with a set of
tests defined for it. To find out how to set up tests, see Setup mode.

To run a test, you will need to be in Test mode. Once in Test mode, you will see the following options
in the left panel of the AutoTestSQL screen:

You will firstly need to ensure that you are the currently logged-in Operator. This information will be
displayed under "Operator". If this is a different Operator, select the [Change] button to log in as
yourself. This will bring up the Login dialogue box. Making sure you are logged in correctly will ensure
that the correct Operator details are recorded in the database for this test.

Once you are correctly logged in as the current Operator, you must select the Product that you wish to
test. To do this, firstly select the correct Product Family from the top drop-list, and then the Product
from the second drop-list. When you do this, the test structure for this Product will be created and the
list of results on the right-hand side of the screen will be updated.

Once the test structure has been created, specify the action you wish to take when a failed result
occurs, and then click the [Run] button to start the test.

Entering Product Instance details

When the test starts, you will be prompted to enter the serial number of the device that you are
testing:

You can define your own validation for this serial number in your script - see the description of the
ValidateSerialNumber function for details.

If you have elected to "Stop the test" when a failed result is detected, then the script will stop running
when the first failed result is logged in the database. Otherwise, the test will run through to completion,
or will run until the [Stop] button is clicked. See Stopping a test for further details.

67

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The default selections for the Product Family and Product will be the last
ones used. This information is remembered between AutoTestSQL
sessions, as is the action to take on test failure.

6.4.4 Stopping a test

In Test mode, you can stop a test at any point by clicking the [Stop] button.

When the script is stopped in this way, the AutoTestSQL program must ask the script to stop at the
next convenient point. It is possible that it may be able to stop immediately, although more likely that
there will be some delay in this process. While the script is trying to stop, the following message will
be displayed:

The most likely place for the script to be able to stop is the next point at which a call is made to the
AutoTestSQL software using one of the built-in Script Functions. For example, the script will contain
many calls to SetResult to write its details to the database; After clicking the [Stop] button, it is likely
that the script will reach another SetResult call very soon and can end neatly.

Under some circumstances, the script may never be able to stop at a convenient point - for example,
if the script is stuck in an endless loop due to a bug in the script (See Common script problems). In
this case the above message will remain on the screen, and you will only be able to stop the script
using the [End Now] button. It is recommended that the [End Now] option is not used unless
absolutely necessary, since there is a risk that it may leave the script without tidying up properly; for
example without cleaning up memory, or leaving the dScope object open.

For details of what happens when the script is stopped, see Test completion.

6.4.5 Re-testing failures

In Test mode, you can specify the action that you wish to take when a failed result is detected during
a test.

There are three options available:

Continue with test: This option simply ignores the fact that a failure has occurred, and continues with
the test.

Stop the test: This option stops the test immediately when a failed result is detected. The current
Test Set Scriptlet is stopped, and the test is finished neatly by calling the Product Scriptlet's
OnTestFinish function, if present.

68

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Ask Operator if re-test required: When the failed result is detected, the Operator is shown the
following options:

Selecting "Continue" will simply carry on with the test. "Repeat test" will stop the currently running Test
Set Scriptlet, reset the status of all Result Elements within the Test Set to "Unknown", and restart the
Scriptlet. "Stop Test" will simply stop the test at the current position, calling the Product Scriptlet's
OnTestFinish function to finish neatly.

6.4.6 Test completion

When a test is stopped, either by clicking the [Stop] button while the test is running, or automatically
due to completion of the test or stopping due to a failure, a number of things may occur. These will
happen according to the selections made in the Options dialogue box - see this section for full details
of the options available.

Discarding results

An option can be set to ask the Operator whether to save or discard the results at the end of the test.
If this option has been turned on, you will see the following message:

This option is useful when setting up and debugging tests, to ensure that the database does not get
filled with debugging results that are not required. Select [Yes] to write the results to the database, or
[No] to discard the results.

Note that in order to allow the Operator to carry on using AutoTestSQL (for example, to enter Fault-
find mode), the results are actually saved quickly to a temporary file. A background thread will then
write the results to the database in its own time, without interrupting any actions the Operator may be
performing.

69

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Test reports

AutoTestSQL can be set up to Show, Print and/or Save details of the test in a Test Report. Any
combination of these options can be set, together with whether the Operator should be asked at the
end of the test, or whether the report generation should occur automatically. If this option has been
set, then at the end of the test, you will be asked whether you wish the Test Report to be created:

The text in this message will change depending on which combination of
show, save and print have been selected in the Options dialogue box.

If you select [Yes] then the Test Report will be created. This may take several seconds depending on
the size of the test structure. For a full description of the test report, see The Test Report.

Fault-find mode

If the test failed, you will be given the option to enter Fault-find mode. This gives you the opportunity to
recreate the failure situation, rectify it, and log details to the database:

Clicking [Yes] here will cause the current mode to change to Fault-find mode, and the Test Session
just completed will be listed in the tree of results on the right-hand side.

70

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

6.4.7 The Test Report

A Test Report can be created once a test has finished, showing full details of all the results for the test
session. The test report is created as an HTML file. Depending on the settings for the Test Report in
the Options dialogue box, this will either be saved as a temporary file or saved permanently according
to the filename structure specified. When the report is displayed or printed, it will have the following
format:

The Test Report simply lists all the results in the test session, together with their status, and formats
them using a .css (cascadable style sheet) file (see below).

The Cascadable Style Sheet File

The Cascadable Style Sheet contains formatting details for the Test Report. It is stored with a file
name of TestReport.css in the Test Reports subfolder of the AutoTestSQL program folder. It
contains formatting details of each type of entry in the report - Result Sets, Result Elements, etc. and
also for each result status (Passed, Failed, etc.). This file can be changed if required to alter the
format of the report.

The location of the Test Reports folder is defined in the Options dialogue box.

71

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

6.5 Fault-find mode

Fault-find mode allows you to investigate a failure in a test, and determine its cause. It allows you to
select an individual failed result, and then get the test equipment back to exactly the same condition
as it was in when the failure occurred. In this way the available equipment (for example, the dScope)
can be used to investigate the cause of failure before logging details of the fault to the database. The
fault can be rectified at this point for the Product Instance under test, and since the details have been
stored in the database, future analysis can be done of the most common reasons for failure of a test.

The screen in Fault-find mode is similar to that of Test mode. It consists of a series of fields on the left
hand side, and the hierarchical tree of results on the right. This tree of results is identical to the tree of
results created in Test mode, and allows the Operator to select a failed result to investigate.

The following sections describe the operation of Fault-find mode:

Fields and controls
Selecting a failed result
Entering Fault details

6.5.1 How Fault-find mode works

Fault-find mode works by getting the test equipment back to exactly the same situation that it was in
when a failure occurred. This enables any available equipment (for example, the dScope, or a multi-
meter) to be used to investigate the cause of failure, since the EUT, the dScope, and any other
equipment should be in exactly the same state as it was when the fault occurred.

72

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

To do this, AutoTestSQL runs selected Test Set scriptlets. It is usually not acceptable to run all the
Scriptlets up to the point of failure, as this could take a long time. However, it must run enough of the
Scriptlets to ensure that the equipment is in the same state - for example, the correct dScope
Configuration must have been loaded; any automated control of the EUT must have occurred (for
example, downloading of patches); any switching of channels using an I/O Switcher must have been
done; and the correct inputs and outputs of the EUT must be selected in the same way as when
testing.

In Fault-find mode, the Operator selects the Result Element under investigation in the tree of results.
AutoTestSQL will search from this item upwards through its parent Result Sets until it finds a Scriptlet.
This Scriptlet will be run in an attempt to get the system back to the state of failure. If more than one
Result Element is selected, this process will be applied to each of them in turn, creating a list of the
Scriptlets to be run.

Usually, the Operator will select a single Result Element, or a Result Element together with all its
parent Result Sets up to the top-level Result Set in the Product's test session (see
Selecting a failed result). In the latter case, AutoTestSQL will create a list of the Scriptlets to be run,
starting with the top-level Result Set, and working its way down to the Result Element. This ensures
that the Scriptlets are run in the same order that they were run when the test was performed.

The OnTestStart and OnTestFinish functions in the Product Scriptlet will also be run during Fault-find
mode, as in Test mode.

In Fault-find mode, no results are written to the database.

6.5.2 Fields and controls

In Fault-find mode, the left-hand side of the screen contains the various fields and controls available.
These are similar to the controls found in Test mode:

73

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The following is a list of the available fields and controls, and their function:

Product Family Allows selection of the Product Family of the Product whose fault is to be
investigated.
By default, this will be the last Product Family used.
When the Product Family is changed, the drop-list of Products (see below)
will be refilled with the Products in the new family.

Product Allows selection of the Product whose fault is to be investigated. By
default, this will be the last Product used.
When a new Product is selected, the test structure for this Product will be
recreated and the tree of results will be updated to reflect the tests to be
done on this Product.

Operator Shows the current Operator logged in to AutoTestSQL.
Use the Change button to log in as a different Operator (or the Change
Operator option on the Utility menu).

Change >> Allows the current Operator to be changed. This means that a different
Operator can log in to perform fault-finding, without having to exit from the
AutoTestSQL application.

Serial No. Shows the serial number of the Product Instance currently under
investigation.

Select new Product
Instance

Use this button to select a new Product Instance to perform fault-finding
for. See Selecting a new Product Instance (below) for further details.

Run selected
function(s)

Runs the parts of the script relevant to the currently selected Result
Element in the tree.
See Selecting a failed result for full details.

Stop Stops the currently running fault-find script.

Show ... levels This determines how many levels to show in the tree of results. Since
there will usually be a lot of hierarchically-stored results in the tree, it is
more likely that individual branches of the tree will be opened and closed
when necessary.
Note that it may take some time to open the tree of results, of there are a
lot of Test Sets at the required level.

Show Test Report Recreates and shows the Test Report for this set of results. See
The Test Report for more details.

Some of these fields can be enabled or disabled depending on whether the
script is currently running. For example, the [Stop] button is disabled unless a
the script is running, and the [Run] button is disabled whilst the script is
running.

Selecting a new Product Instance

Whilst in Fault-find mode, you may wish to investigate a fault from a different Test Session, or indeed
a different Product entirely. For a Test Session for a different Product, you will need to firstly select the
Product from the Product drop-list.

74

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

To select a new Test Session, click the [Select New Product Instance] button. The following dialogue
box will open:

Enter the Serial number of the Product that you wish to choose. When you exit from the Serial
number field, the list at the bottom will be filled with all the Test Sessions for this product, showing the
date, time, Operator and status of the Test Session. If the Options dialogue box has been set up to
allow the same serial number to be re-used for different Products, then this list will be limited to the
instances of the currently selected Product in the drop-list on the left-hand panel of the Fault-find
screen.

To choose one of the Test Sessions listed, click the [OK] button. The dialogue box will close, and the
list of results on the Fault-find screen will be filled with the details of the selected test session.
Alternatively, click [Cancel] to return to Fault-find mode without changing the current Test Session.

6.5.3 Selecting a failed result

In Fault-find mode, you will select a result from the list of results in the right-hand panel of the
AutoTestSQL screen. AutoTestSQL will then attempt to run the scripts that were run in Test mode to
get to the situation where this result failed.

For a description of the operation of Fault-find mode, see How Fault-find mode works.

75

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

There are two ways of selecting a failed result - you can either select the individual result, as shown
below:

Alternatively, by holding down the <Alt> key whilst clicking, you can select the result and all its parents
in the tree.

Note that there is an important difference between these two selection methods, and it may require
some knowledge of the structure of the tests in order to know which to choose. See
Knowledge of the test structure for further details.

Fault-find mode will search up the Result tree and run the first Scriptlet that it finds to attempt to get to
the fault situation. If a single Result Element is selected, then only one Scriptlet will be run; if the
Result Element and all its parent Result Sets are selected, the Scriptlet for each one (if present) will

76

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

be run when getting AutoTestSQL back into the fault condition. See How Fault-find mode works for a
full description of this process.

Note that the [Run selected function(s)] button will be disabled until a Result
Element is selected.

6.5.4 Entering fault details

In Fault-find mode, clicking the [Run selected function(s)] button will cause the relevant Scriptlets to
be run up to the point where the failure occurred. When this point is reached, the following message
will be displayed:

The system should now be in the same state as it was in Test mode when the failure occurred. You
can now use all available equipment (multi-meters, the dScope software, etc) to work out where the
problem lies and, if necessary, correct it.

Use the <Alt> + <Tab> keys together to cycle through the currently open
Windows applications, and bring the dScope to the front of the screen.

77

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Entering details of the fault

When you have found the problem, click [OK] to let you enter details of the fault in the database, or
[Cancel] to exit without logging the fault details. Clicking [OK] will bring up the following dialogue box:

The following details can be entered into the database:

Board ref. Use this field to enter a reference to the board on which the component
causing the fault is located. This can be up to 20 characters long.

Component ref. Enter the reference of the component causing the fault. This can be up to 20
characters long.

Fault details Use this field to enter details of the fault. This can be up to 1000 characters.

Solution Use this field to enter details of how the fault was corrected. This can be up to
1000 characters.

Comments Use this field to enter any additional comments about this fault. This can be
up to 1000 characters.

OK Exits from this dialogue box and saves the fault details in the database.

Cancel Exits from this dialogue box without saving any fault details to the database.

These fault details can then be used for management reporting purposes, to enable easy analysis of
where the most faults occur.

6.5.5 Knowledge of the test structure

Ensuring that Fault-find mode operates correctly may require some knowledge of the order in which
the various test Scriptlets are integrated into the test structure. For full details of how the test structure
is put together, see the sections on Test structure and Test Scriptlets.

78

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

For example: consider the following Test Set structure, the associated Scriptlets, and the tasks that
each Scriptlet performs:

Mono Inputs (Scriptlet: MonoInputs.vbs)
Input 1 (Scriptlet: MonoInputN.vbs)

 Mic Gain Stage (No Scriptlet)
 Mic Pot Response (Scriptlet: MicPotResponse.vbs)

Centre
Amplitude (dBu)
THD+N (%)

Minimum
Amplitude (dBu)
THD+N (%)

Maximum
Amplitude (dBu)
THD+N (%)

 Input 2 (Scriptlet: MonoInputN.vbs)
(As for Input 1)

..
Input N (Scriptlet: MonoInputN.vbs)

(As for Input 1)

Assume for this example that the Scriptlets associated with these tests do the following:

MonoInputs.vbs Loads a dScope Configuration.

MonoInputN.vbs Asks the Operator to plug the Mono Input into the correct channel
of the EUT, and to set all pots for the channel to their mid-point.

MicPotResponse.vbs Displays messages asking the Operator to set the Pot to Centre,
Minimum and Maximum; for each of these, it measures the
Amplitude and THD+N using the dScope.

If one of these Amplitude or THD+N measurements failed, then you would use Fault-find mode to
work out why. You would have two possible options for running the scripts: selecting only the failed
Result Element, or selecting the Result Element and all its parents (See Selecting a failed result for
full details of how to do this).

Selecting only the Result Element would cause AutoTestSQL to search up the tree until it found the
"MicPotResponse" Scriptlet. This Scriptlet would be run, taking the Amplitude and THD+N
measurements.
However since no dScope Configuration has been loaded at this point, and the Operator has not been
asked to make the required connections to the EUT, both the dScope and the EUT are in an
undefined state and so the results may not correspond to those made during the test.

In this example, the correct option would be to select the Result Element and its parents. This would
search up the tree and run the MonoInputs, MonoInputN and MicPotResponse Scriptlets in that order.
This would ensure that the relevant dScope Configuration was loaded; the Operator would be shown
a message asking for the correct connections to be made to the EUT; and the Amplitudes and
THD+N measurements would be made under the same circumstances as they were during the test.

As you can see, in this example, some knowledge of what the test's Scriptlets contain is necessary for
correct operation in Fault-find mode.

6.6 Reports

Management reporting will be managed by an external report designer, such as Crystal Reports.

The application to be used for this can be specified in the Options dialogue box; this application is
then invoked when the AutoTestSQL Toolbar's Reports button is clicked.

79

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

For a full description of management reporting with AutoTestSQL, see Management reporting.

6.7 Options dialogue box

The Options dialogue box is available from AutoTestSQL's Utility menu. It allows the Operator to
specify a variety of miscellaneous operating options for AutoTestSQL. These are stored in the
Windows registry, and are thus retained for all future sessions.

The Options dialogue box is split into three parts, each one with its own tabbed section:

General tab

The General tab stores miscellaneous AutoTestSQL options:

Database string: This field contains the string used to connect to the database. By default this
contains a string used to open an MSDE database on the local machine, i.e:

DSN=AutoTest_MSDE;

Since this is accessing the same database as the AutoTestSQL Report Viewer
software, the Database string is stored in the same place in the registry for
both AutoTestSQL and the Report Viewer. Changing this value will also affect
the Report Viewer software's database opening details.

Scriptlet folder: This field defines the base folder for all Scriptlets. In Setup mode, if Test Set
Scriptlets are specified as relative paths, they are assumed to be relative to this base folder. If this
folder name contains spaces, it must be enclosed in double-quotes.
On installation, this entry is set by default to <AutoTestSQL program folder>\Scripts, where
<AutoTestSQL program folder> is the folder to which the AutoTestSQL program has been installed.

Start in: This allows you to specify which mode you would like AutoTestSQL to start in. This can be
set to Test mode, Fault-find mode, Setup mode, or the last mode that you were in when you finished
using AutoTestSQL. The default is "Test mode".

Serial numbers are unique throughout all products: Checking this option means that you cannot
use the same serial number for different Products. If unchecked, then the same serial number can be
reused for different Products, even within different Product Families. This option defaults to checked.

Ask whether to save or discard results when test stops: If this box is checked, then on
completion of a test, the Operator will be asked if they wish to store the test results in the database. If
they select No, then any results created as part of the test will be deleted from the database. This can
be particularly useful when setting up and debugging tests, as you may not want to store the results in
the database until you are happy with your test setup. This option defaults to checked.

80

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Save results for ALL Test Sets...: A test may be stopped part way through for one of a number of
reasons, which may leave some of the Test Sets "Untested". This option can be used to specify that
all results, even those untested, are written to the database. If left unchecked, then only Test Sets that
have been tested (either partially or completely) will be saved.

When re-testing failures, ...: When a failed result is detected, the Operator can re-test the Test Set.
This drop-list can be used to specify whether you wish to make a note of whether the Result Elements
within the current Result Set have been re-tested. The following options are available:

Mark all Result Elements as re-tested When the Test Set Scriptlet runs to set result
values again, all Result Elements that have
already been tested are marked as re-tested.

Mark only the current failed Result Element as
re-tested

Only the current Result Element, the one causing
the failure, is marked as re-tested.

Mark all failed Result Elements within this
Result Set as re-tested

Any Result Elements that have a "Failed" status
are marked as bing re-tested (any that are
Passed, Unknown or non-critical are not).

Do not mark any Result Elements as re-tested This option ignores whether an item has been
tested more than once, and simply marks it as
Passed or Failed.

Reports tab

The Reports tab contains options pertinent to Test Reports and Management reporting in
AutoTestSQL.

Reports folder: This field contains the location of the base folder for Test Reports. All Test Reports
are stored in this folder or its subfolders. If this folder name contains spaces, it must be enclosed in
double-quotes.

On Test completion, ... : This options allows you to specify whether the selected options for Test
Reports should always be applied, or whether the Operator should be asked. This option defaults to
"ask whether to..."

 If the subsequent Show, Print and Save Test Report fields are left unchecked, no Test Report
will be created and the selection in this field is ignored.

Show the Test Report: If checked, then the Test Report will be shown to the Operator on test
completion. This option defaults to checked.

Print the Test Report: If checked, then the Test Report will be printed on test completion. This option
defaults to unchecked.

81

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Save the Test Report: If checked, then the Test Report will be saved to the hard disk on test
completion. This option defaults to unchecked.

File name format: This specifies the format of the name of the Test Report file to be saved to the
hard disk, if the preceding Save the Test Report check box is checked. Test Reports will be saved
within the Test Reports folder specified above, using this format. This field can substitute various
items of text from the current Test Session to ensure uniqueness of file names. This field is blank by
default.

The following items can be substituted into the file name format:

[ProductFamily] The name of the Product Family.

[Product] The name of the Product.

[Operator] The name of the currently logged-in Operator.

[OperatorID] The ID number of the currently logged-in Operator.

[SerialNum] The Serial number of the Product Instance being tested.

[Year] The current year, as a four-digit number.

[ShortYear] The last two digits of the current year.

[Month] The current month, as a two-digit number (01 to 12)

[Day] The current day of the month, as a two-digit number (01 to 31)

[Hour24] The hour that the test was started, in 24-hour format (00 to 23)

[Hour12] The hour that the test was started, in 12-hour format (01 to 12)

[Minute] The minute that the test was started (00 to 59)

[AutoInc] Whether to auto-increment the file name if the file name already exists. If it
does, then the [AutoInc] text in the file name will be replaced by the next
number in sequence, starting at 1.
If [AutoInc] is not specified in the file name format, then whenever
AutoTestSQL tries to save a Test Report with a file name that already exists,
the Operator will be asked to either confirm overwriting the file, or to specify a
new file name.

For example, entering a file name format of:

 [ProductFamily]\[Product]\[SerialNum]_[Year][Month][Day]_[Hour24][Minute].html

will ensure that each Test Report will be stored in a folder with the Product Family name, within a
subfolder with the Product name, and with a file name consisting of the serial number, the date and
the time of the test.

If the file name resulting from applying this format contains invalid filename
characters, these will be removed from the string before the file is saved.

Report application: This contains the full path name of the application used to produce management
reports. This application will be run when the "Reports" button is clicked from the main toolbar. If this
application name contains spaces, it must be enclosed in double-quotes.

82

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Naming tab

AutoTestSQL allows you to use your own names for several of its key areas. This part of the Options
dialogue box allows you to specify the names you want to give to each item:

Product Family: A group of Products.

Product: An item that will be tested.

Product Instance: Individual instances of Products. A Product Instance equates to a single item of
Equipment Under Test (EUT).

Operator: A user of AutoTestSQL, that might set up the tests, or perform testing and fault-finding.

Scriptlet: An individual script file that is associated with a Test Set.

Test Set: A group of tests. This group may contain Test Elements, and/or other Test Sets.

Test Element: A Test entity that corresponds to a single value (numerical, pass/fail or text) that will
be entered into the database.

Result Set: A group of results. This group may contain Result Elements, or other Result Sets.

Result Element: A single result value that will be entered into the database.

6.8 AutoTestSQL security

AutoTestSQL contains a basic security system that allows different Operators to be given different
levels of responsibility. There are a number of operations that each Operator can be allowed to
perform, or denied access to. For example, accessing the AutoTestSQL Options using the
Options dialogue box may be an activity that is restricted to all but the most advanced Operators.

Each Operator on the system is given a password, and must use this password to login to
AutoTestSQL. This ensures that Operators can only log in as themselves and not as anyone else.
Once using the system, the Operator may be denied access to certain parts of AutoTestSQL
depending on the operations that they have been given access to when their Operator details were
entered (See Entering/editing Operator details).

The Administrator Operator

AutoTestSQL contains a built-in Administrator Operator that cannot be removed (although it can be
renamed, if necessary). This Administrator has full access to all parts of the system, and can
therefore be used to set up and edit details of other Operators on the system.

 When AutoTestSQL is first run, this Administrator is the only Operator in the database and you
will be required to log in as the Administrator (see below) before accessing AutoTestSQL. The

83

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

password is initially blank, and you will be requested to change it before continuing.

The Login dialogue box

The Login dialogue box is always displayed when AutoTestSQL is run. It can also be accessed by
clicking the [Change >>] button in Test or Fault-find mode, or using the Change Operator option on
the Utility menu.

Name/ID Select the name of the Operator to log in as from the drop-list, or type in
the Operator ID or name.

Password Enter the password of the Operator to log in as. This password will be
displayed as asterisks to preserve secrecy.

Change password >> Click this button to change the password of the Operator currently
selected in the Name/ID drop-list. See Changing passwords for details of
this option.

OK Attempts to log in as the specified Operator.
If the name or password is incorrect, you will be informed and asked to
try again; otherwise, the dialogue box will be closed and you will be
logged in with these Operator details.

Cancel Closes the Login dialogue box without attempting to log in as the current
operator.
If this dialog box is being displayed on startup, the AutoTestSQL
application will close. Otherwise, the previous Operator will stay logged
in.

Changing passwords

When setting up Operators, it can be specified that the Operator must change their password the next
time they log in to AutoTestSQL. It is also possible for an Operator to change their password by
clicking on the [Change password >>] button on the Login dialogue box. In either situation, the
following dialogue box will be displayed:

84

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Old password For security reasons, the old password must be entered before it can be
changed. Entries made in this field will show as asterisks.

New password The new password to change to. Entries made in this field will show as
asterisks.

Confirm new password Re-enter the new password as confirmation. Entries made in this field
will show as asterisks.

OK Providing the old password is correct, and the new password is valid and
is correctly confirmed, this will close the dialogue box and a confirmation
message will be given that the password has been changed.
Otherwise, the Operator will be informed of the failure and asked to try
again.

Cancel Closes the dialogue box without changing the password.

The AutoTestSQL database

Part

7

87

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

7 The AutoTestSQL database

This section of the manual contains a detailed description of the AutoTestSQL database. It is not
necessary to read or understand this section in order to use AutoTestSQL; however a fuller
understanding may help when designing a test structure and writing Scriptlets. It will be necessary to
have some knowledge of the database structure to produce management reports.

For a description of how the database is structured, or the fields in each table, see Database structure
or Database tables.

To find out how to write your own SQL commands to query the AutoTestSQL database, see
Using SQL from the command-line.

For important information about backing up and restoring the database, see
Backing up and restoring the database.

To find out how to set up a multi-user version of AutoTestSQL, see Multi-user setup.

For more information on the AutoTestSQL software's database MSDE and its relationship to SQL
Server, see Limitations of MSDE.

7.1 Database structure

An AutoTestSQL database stores its data in tables. A table represents an entity in the AutoTestSQL
structure; for example a Product, an Operator or a Result Set.

Each table contains a row for each record of the specified type. The columns in the table represent
the different fields of the record - for example a Product table contains a column for the Product's
name, and a column for the Product's parent Product Family.

The following diagram shows which tables in the AutoTestSQL database are linked together. For full
details of the fields which are used for these links, see the section on Database tables.

88

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Note: The arrows in the diagram above imply a "has a link to" relationship.

7.2 Database tables

This section lists the tables in the AutoTestSQL database, and the fields available within each table
together with their data type. For an explanation of the different data types, see Data types.

ProductFamily

This table contains details of all Product Family records.

Field name Data type Description

productfamily_name CHAR(50) Name of the Product Family.

productfamily_id INT Unique ID of the Product Family.

Product

This table contains details of all Product records.

Field name Data type Description

product_name CHAR(50) Name of the Product.

product_script NVARCHAR(1024) File name of the Product Scriptlet.

product_id INT Unique ID of the Product.

productfamily_id INT ID of the Product Family that this Product
belongs to.

89

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Operator

This table contains details of all Operator records.

Field name Data type Description

operator_id INT Unique ID of the Operator.

operator_name CHAR(30) Name of the Operator.

operator_userid INT User-entered ID of the Operator.

operator_password CHAR(20) Password of the Operator. Note that this is
encrypted before storage in the database.

operator_changepassword TINYINT Whether the Operator must change their
password at the next logon.

operator_allowedoperations SMALLINT Used to store details of which operations this
Operator is allowed to perform.

TestSet

This table contains details of all Test Set records.

Field name Data type Description

testset_id INT Unique ID of this Test Set

testset_name CHAR(50) The name of this Test Set

testset_script NVARCHAR(1024) File name of the Test Set Scriptlet.

testset_parent INT ID of this Test Set's parent Test Set in the test
structure.
This is set to NULL if it is a top-level Test Set.

testset_index INT Index of this Test Set into its parent. This
allows Test Sets to be correctly ordered within
their parents in the test structure.

product_id INT ID of the Product that this is a Test Set for.
This is set to NULL if it is not a top-level Test
Set.

testset_parentname NVARCHAR(1024) Full name of all this Test Set's parents, in
order of hierarchy, separated by the backslash
character (' \ '). This allows Test Reports to be
created quickly since the entire test structure
does not need to be traversed for each part of
the hierarchy.

TestLimits

This table contains details of limit records for a Test Element.

Field name Data type Description

testlimits_id INT Unique ID of this limit record.

testlimits_upper NVARCHAR(1024) Upper limit for the Test Element.

testlimits_lower NVARCHAR(1024) Lower limit for the Test Element.

90

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

TestElement

This table contains details of all Test Element records.

Field name Data type Description

testelement_id INT Unique ID of this Test Element.

testelement_description NVARCHAR(1024) Description of the Test Element.

testelement_index INT Index of this Test Element into its parent Test
Set. This allows Test Elements to be correctly
ordered within their parents in the test
structure.

testlimits_id INT ID if the TestLimits record containing the limits
for this Test Element.

testelement_resulttype TINYINT The type of result of this Test Element:
0 = Numerical result
1 = Pass/Fail
2 = String

testset_id INT The ID of this Test Element's parent Test Set.

testelement_sigfigs SMALLINT The number of decimal places to use when
displaying results created for this Test
Element.

ProductTestSession

This table contains details of all Test Session records.

Field name Data type Description

producttestsession_id INT Unique ID of this Test Session.

producttestsession_datetime SMALLDATETIME The date and time that this Test Session was
started.

operator_id INT ID of the Operator performing this test.

producttestsession_status TINYINT The status of this Test Session (See
description of the ResultElement table for
details).

product_id INT ID of the Product that this is a Test Session
for.

producttestsession_serialnum NVARCHAR(20) Serial number of the Product Instance that this
test is being done for.

ResultSet

This table contains details of all Result Set records.

Field name Data type Description

resultset_id INT Unique ID of this Result Set.

resultset_parent INT ID of this Result Set's parent Result Set.
This is set to NULL if it is a top-level Result
Set.

testset_id INT ID of the Test Set from which this Result Set
was created.

producttestsession_id INT ID of the Test Session that this Result Set is
part of.

resultset_status TINYINT The status of this Result Set (See description
of the ResultElement table for details).

91

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

ResultElement

This table contains details of all Result Element records.

Field name Data type Description

resultelement_id INT Unique ID of this Result Element.

resultelement_value NVARCHAR(1024) The Result Element's value.

resultelement_upperlimit NVARCHAR(1024) The upper limit used to calculate this Result
Element's status.

resultelement_lowerlimit NVARCHAR(1024) The lower limit used to calculate this Result
Element's status.

resultelement_status TINYINT The status of this Result Element:
0 = Failed
1 = Passed
2 = Unknown
3 = Non-critical.
See How a result status is calculated for
details of how limits are applied to get these.

testelement_id INT ID of the Test Element that this Result
Element was created from.

resultset_id INT ID of this Result Element's parent Result Set.

producttestsession_id INT ID of the Test Session that this Result
Element is part of.

resultelement_numtests TINYINT The number of times that this Result Element
has been tested. This will usually be 1, unless
you have specified that you wish to re-test
failed results (see Re-testing failures), and
have used the Options dialogue box to specify
that you wish to keep a record of which Result
Elements have been re-tested.

FaultDetails

This table contains details of all fault details stored in the database.

Field name Data type Description

faultdetails_id INT Unique ID of this FaultDetails record.

faultdetails_fault NVARCHAR(1000) Description of the fault.

faultdetails_board NVARCHAR(20) The board containing the component that
caused the fault.

faultdetails_component NVARCHAR(20) The component that caused the fault.

faultdetails_solution NVARCHAR(1000) Description of how the fault was fixed.

faultdetails_comment NVARCHAR(1000) Any comments about this fault

resultelement_id INT ID of the Result Element that these Fault
Details are linked to.

operator_id INT ID of the Operator that entered these fault
details. Note that this may be different to the
one who carried out the test in the first place,
i.e. the Operator linked to the
ProductTestSession record.

92

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

NextID

As seen above, many of the records in the AutoTestSQL database contain a field holding a unique
record ID number (for example product_id in the Product table). This number is used to link records to
other tables.

In order to ensure that these ID numbers are kept unique, the NextID table holds a single record that
stores the next unused ID number in sequence for each of these record types. Every time a new
record of a given type is created by the AutoTestSQL application, it is given the next ID number from
the correct column in this table, and the number in this table is incremented.

Field name Data type Description

nextid_testset INT The next unique ID for a TestSet record.

nextid_testelement INT The next unique ID for a TestElement record.

nextid_testlimits INT The next unique ID for a TestLimits record.

nextid_producttestsession INT The next unique ID for a ProductTestSession
record.

nextid_resultset INT The next unique ID for a ResultSet record.

nextid_resultelement INT The next unique ID for a ResultElement
record.

nextid_productfamily INT The next unique ID for a ProductFamily
record.

nextid_product INT The next unique ID for a Product record.

nextid_operator INT The next unique ID for a Operator record.

nextid_faultdetails INT The next unique ID for a FaultDetails record.

VersionInfo

This table contains the current version information for the database.

Field name Data type Description

versioninfo_version INT Version number for the database.
If the database does not match the version
required by the AutoTestSQL software, then
AutoTestSQL will not run.

Data types

The following table describes each of the data types used in the above tables:

Data type Description

INT A 4-byte integer. It can have values from -2,147,483,648 to
2,147,483,647.

SMALLINT A 2-byte integer. It can have values from -32,768 to 32,767.

TINYINT A 1-byte integer. It can have values from 0 to 255.

SMALLDATETIME Date/time data from January 1st, 1900 to June 6th, 2079, stored to
the nearest minute.

CHAR(n) Fixed-length character data with a maximum length of n
characters.

NVARCHAR(n) Variable-length character data with a maximum length of n
characters.

93

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

7.3 Using SQL from the command-line

Setting up a shortcut to MSDE

If you want to perform simple SQL operations on the database, you can set up a simple shortcut on
your desktop:

1) Right-click on the desktop and select "New Shortcut" from the resulting menu.
2) Under the field titled "Type the location of the item", enter osql -U sa -q "Use AutoTest;"
3) Click the [Next >] button.
4) Enter a sensible name for the shortcut, such as "MSDE - AutoTestSQL"
5) Click Finish to create the shortcut on the Desktop.

Using the shortcut

When you double-click on the shortcut created above, it will open up a command-line window using
the AutoTestSQL database, and will prompt you for the password. This is the password of the system
administrator account (the account whose login is sa).

When MSDE is first installed, this password is blank, but it is advisable to change
it as soon as possible. See Changing the database administrator password for
details of how to do this.

As you enter the password, the characters you type will not be displayed on the screen; the display will
not change until you press <Enter>. Once the correct password has been entered (the command-line
shortcut will close if an incorrect password is used), the prompt will change to show 1> . This means
that it is ready to start accepting SQL commands. You can type in commands that go over more than
one line and then execute them using the GO command.

Type exit to close the command-line window.

7.4 Changing the database administrator password

When MSDE is first installed, it has a system administrator whose login name is sa and whose
password is blank.

This system administrator has complete access to MSDE, including the AutoTestSQL database and
all other databases. For this reason it is important to change the password to prevent unauthorized
access to the database.

Since MSDE is a cut-down version of SQL Server, there are no graphical tools to aid you with this.
Changing the password must be done using the command-line. If you have set up command-line
access to the AutoTestSQL database (see Using SQL from the command-line), then you can simply
double-click on the icon created, press <Enter> to enter a blank password, and then type the
following:

sp_password NULL, newpassword, sa
go

where newpassword is the your new password.

Otherwise, click on the Windows [Start] button, and select the Run option. Type the following:
osql -U sa "sp_password NULL, newpassword, sa"

where newpassword is your new password. You will be prompted for the existing password; just
press <Enter> and the password will be changed.

Note that the above commands both assume that you are changing the password from NULL to
<newpassword>. To change the password in the future, you will need to replace the NULL in both

94

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

the commands above to be the password that you have just entered.

All the SQL files and batch files supplied with AutoTestSQL, together with any
that may be provided in the future by Prism Sound, use the 'sa' login by
default. When run, they will prompt you for the password.

7.5 Creating new database logins

When MSDE is first installed, it has only a single system administrator user (sa), and a user created
specifically for the AutoTestSQL software to access the database. For creation of management
reports, however, it is recommended that you create at least one other user for the report designer to
use; preferably a user with read-only access.

To create another user, you will firstly need to set up command-line access to the database as the
system administrator user. See Using SQL from the command-line for details of how to do this. Once
this is done, you can double-click on the icon created and enter the password of the sa user to access
the database.

To add a new user to the database, you need to type the following lines into this command window:
EXEC sp_addlogin '<name>', '<password>', AutoTest
GO
EXEC sp_adduser '<name>', '<name>', '<db_access>'
GO

where <name> is the name of the new user, and <password> is their password. <db_access> is the
level of access to the database that you want to give the user, and should be one of the following:

db_owner Can perform any activity in the database.

db_backupoperator Can back up the database

db_datareader Can see any data from all user tables in the database.

db_datawriter Can add, change or delete data from all user tables in the database.

There are other database roles available, but they are beyond the scope of this
manual. Knowledge of these roles is not necessary for use with the AutoTestSQL
database.

7.6 Backing up and restoring the database

From the moment that you have started to enter a test structure in the database, it is extremely
important that you back your data up on a regular basis.

Since MSDE is a cut-down version of SQL Server, it does not have a graphical interface to help with
this task. However, two batch files are supplied with AutoTestSQL to help you to back up and restore
the database. You may wish to edit these files to suit your needs.

These batch files run a copy of the osql command-line utility together with the relevant command. This
means that they can be run simply by double-clicking on the file.

Backup batch file

The backup batch file, MSDE_BackupDatabase.bat, executes one of the following commands:
BACKUP DATABASE AutoTest
TO DISK = '.\AutoTest_backup'
WITH INIT

or

95

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

BACKUP DATABASE AutoTest
TO DISK = '.\AutoTest_backup'

The first of these commands overwrites the existing database backup; the second appends the
current database to the file.

Both these files overwrite the backup file itself, "AutoTest_backup". If you
want to keep subsequent backup files, it is a good idea to perform this
backup, then rename the file to something unique before the next backup is
performed.

Restore batch file

The restore batch file, MSDE_RestoreDatabase.bat, executes the following command:
RESTORE DATABASE AutoTest
FROM disk = '.\AutoTest_backup'
WITH REPLACE

this replaces the current database with the one contained in the "AutoTest_backup" file.

Use this batch file with care! It will NOT give you any warning that your data will
be overwritten, and will not ask you if you are sure!

7.7 Multi-user setup

AutoTestSQL can be used in a multi-user environment, although the number of users will be limited.
See Limitations of MSDE for further details.

Once set up for multiple users, a single Server machine can be used to store the database, scripts etc
and various AutoTestSQL Clients can then run the software to perform test setup, run tests, etc.

To set up AutoTestSQL for multiple Operators, you will need to take the following steps:

On the Server machine

1) Run the SQL Server Network Utility, svrnetcn.exe.
 This should be located in the SQL Server Tools\Binn folder, which will be installed by default to
 C:\Program Files\Microsoft SQL Server\80\Tools\Binn
 Move "TCP/IP" from the list of disabled protocols, to the list of enabled protocols.

2) Stop and Restart the SQL Server Service (use the icon in the bottom right of the taskbar).

On each Client machine

1) Install the AutoTestSQL software using the setup.exe file from the installation CD.

2) Open the ODBC Sources Administrative tool (Start\Program Files\Administrative tools\Data
Sources (ODBC)).

3) Select the "AutoTest_MSDE" data source, and click the [Configure] button.

4) Under "Which SQL Server do you wish to connect to?", select the name of the computer you're
using as the Server. Click [Next].

5) Under "How should SQL Server verify the authenticity of the login ID?", select "With SQL Server
Authentication".

96

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

6) Click on the [Client Configuration] button, and ensure that "TCP/IP" is selected under "Network
libraries". Click [OK].

7) UN-check the "Connect to SQL Server to obtain default settings" box.

 This ODBC Source is simply a vehicle for the AutoTestSQL software to access the database,
and should NOT contain login details of its own.
If you don't uncheck this box, you will have to enter the database administrator's "sa" name and
password to continue, thereby allowing anyone full access to the database (with administrator
privileges) via this ODBC source!

8) Continue through the rest of the setup dialogue boxes, clicking [Next] at each one.

Note that when running the AutoTestSQL software on each Client machine, you will have to alter the
Options to ensure that the various folders for Scripts, Management reports etc point to the correct
place. You will probably decide to keep all your Scripts and Reports on the Server, so you'll need to
ensure that the folders point to the Server machine rather than the Client machine.

7.8 Limitations of MSDE

The MSDE database is a cut-down version of SQL Server. It has certain size and performance
limitations, as well as a lack of a graphical interface.

MSDE is a sufficiently functional database to be used initially with AutoTestSQL. However, in a
production environment it may be necessary to upgrade to Microsoft SQL Server to allow tests to be
performed without size or performance limitations.

Some of the limitations of MSDE are outlined below:

· Limited to 2GB of data.
· Limited to 5 concurrent users.
· No graphical tools for database administration.

If any of the above are likely to be a problem, then an upgrade may be necessary to SQL Server at
some point in the future.

It is intended that AutoTestSQL will be improved to allow it to work with the
Open Source database, MySQL. However in its current release version, MySQL's
functionality is too limited to work with the AutoTestSQL software.

Management reporting

Part

8

99

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

8 Management reporting

AutoTestSQL has no built-in way of creating and viewing management reports. It is anticipated that a
professionally available reporting tool will be used to create reports, since these have a huge amount
of useful functionality to format reports in any way you choose.

Several reporting tools are available that can connect to a SQL database and extract information in
the way that you select. The most common of these is Crystal Reports, available from
www.businessobjects.com. A 30-day trial download of Crystal Reports is available from this web site.

We have provided a Report Viewer application with AutoTestSQL, which is optionally selectable as
part of the AutoTestSQL installation. This is a simple application that lists any Crystal Report files in a
specified folder and allows you to view them. Provided with this application are a few simple report
templates that show you some of the things possible with Crystal Reports. Please note that these are
by no means extensive, and are simply provided to show the kind of reports that can be produced.
These templates can be altered if you have your own copy of Crystal Reports.

See The AutoTestSQL Report Viewer for full details of the report viewer.

To find out how to connect to the AutoTestSQL database from your chosen report designer, see
Connecting to the database.

8.1 Connecting to the database

Whichever report tool you use to design reports, it will need to connect to the database. The best way
of doing this is probably through an ODBC data source.

A simple MSDE ODBC data source is supplied for use with the AutoTestSQL software called
AutoTest_MSDE. However, this data source does not have any details of the user login and password
required to access the database, so it cannot be used from outside the AutoTestSQL software. For
use with a report design tool, you will have to create a new data source that contains the login details
of a database user allowed to access the database for reporting purposes.

It is probably not a good idea to use the database system administrator (sa) for this purpose, since
this may allow anyone accessing the report to get full access to the database. You should create a
new database login to create and view reports - this login only needs read permission on the
database, since creating and accessing reports does not require making any changes to the database
itself. See Creating new database logins to find out how to set up a new database user for report
access.

Creating an ODBC connection

Once you have a database login for reports, you should create an ODBC data source. To do this,
select Data Sources (ODBC) from the Administrative Tools option in the Windows Control Panel.
Ensure that the User DSN tab is selected, and click the [Add] button. Select "SQL Server" from the list
of drivers, and click [Finish].

You now need to set up the details of this ODBC Source. The Name of the source can be anything
sensible; for example "AutoTestSQL Reporting". The Description can be left blank, and the SQL
Server must be selected as the machine containing the AutoTestSQL database. This will probably be
"(local)".

Click [Next >], and select "With SQL Server authentication..." at the top of the next dialogue box. At
the bottom, ensure that "Connect to SQL Server..." is checked, and enter the name and password of
the database user that you wish to use to create and access reports.

After clicking [Next >], ensure that "Change the default database to ..." is checked, and that AutoTest

http://www.businessobjects.com

100

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

is selected as the database to change to. You can now select [Next >] again, and finally [Finish] to set
up the data source. If you wish, you can click [Test Data Source] on the last dialogue box to check
your entries, before clicking [OK] to actually create the data source.

This data source can then be used from within your chosen report designer to access the
AutoTestSQL database.

8.2 The AutoTestSQL Report Viewer

The AutoTestSQL Report Viewer is a simple application provided with AutoTestSQL. It allows viewing
of example report templates created using Crystal Reports. As well as viewing the examples, it can be
used as a simple viewer for any report templates subsequently created using Crystal Reports.

For an overview of the Report Viewer's user interface, see User interface basics.

For a detailed list of the menu options available, see Menus.

For a description of the customizable Options available for the Report Viewer, see the
Options dialogue box.

For details of the embedded Crystal Report viewer control, see The Crystal Report viewer.

To find out how to use the Report Viewer to view your own reports, see
Creating your own report templates.

8.2.1 User interface basics

The AutoTestSQL Report Viewer's user interface consists of a number of basic elements:

Menu bar
List of report templates
Crystal Report viewer
Status bar

101

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Menu bar

The Menu bar is situated at the top of the Report Viewer window. It provides access to functions
available within the Report Viewer. See Menus for full details of the contents of the menus.

List of report templates

The left hand side of the Report Viewer screen contains a list of all the Crystal Report templates
contained in a specified folder. The location of this folder can be entered using the
Options dialogue box.

The [Show Report] button will load the selected report template from this list and show it in the Crystal
Report viewer on the right.

Crystal Report viewer

The right hand side of the Report Viewer screen contains an embedded viewer for Crystal Reports
templates. It will view the selected report from the tree on the left. See The Crystal Report viewer for
full details of each of the options available.

Status bar

The bottom line of the Report Viewer window is the Status bar. This shows important indications of
the current state of operation, including warning messages.

102

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

8.2.2 Menus

The following menu options are available in the AutoTestSQL Report Viewer:

File menu

Exit Exits the Report Viewer application.

Utility menu

Options... Opens the Options dialogue box, from which you can change various
operating options for the Report Viewer.

Help menu

Help Contents Accesses the contents page of the on-line help file.

About
AutoTestSQL
Report Viewer...

Displays a box describing the current AutoTestSQL Report Viewer software
release.

8.2.3 Options dialogue box

The Options dialogue box is available from the Report Viewer's Utility menu. It allows the Operator to
specify a variety of miscellaneous operating options for the Report Viewer. These are stored in the
Windows registry, and are thus retained for all future sessions.

Reports folder: This field defines the location of the folder containing the Crystal Reports report
templates. If this is changed, and the [OK] button pressed, then the list of report templates on the
main Report Viewer screen will be refilled.

Database string: This field contains the string used to connect to the database. By default this
contains a string used to open an MSDE database on the local machine, i.e:

DSN=AutoTest_MSDE;

Since this is accessing the same database as the AutoTestSQL software, the
Database string is stored in the same place in the registry for both
AutoTestSQL and the Report Viewer. Changing this value will also affect the
AutoTestSQL software's database opening details.

OK: Applies any changes made and closes the Options dialogue box.

Cancel: Exits the Options dialogue box without making any changes.

103

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

8.2.4 The Crystal Report viewer

The Crystal Report Viewer is an embedded control that the Report Viewer uses to display Crystal
Report templates.

This control consists of a Toolbar, a tabbed area showing the report, and a Status bar detailing the
current page, total number of pages and current zoom factor.

104

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

The Crystal Viewer toolbar

The following options are available from the Crystal Report viewer Toolbar:

First page: Takes you to the first page in the report. This is disabled if the current page is
the first or only page.
Previous page: Takes you to the previous page in the report. This is disabled if the
current page is the first or only page.
Next page: Takes you to the next page in the report. This is disabled if the current page is
the last or only page.
Last page: Takes you to the last page in the report. This is disabled if the current page is
the last or only page.
Goto page: Allows you to select a page number of the report to display.

Close current view: Closes the currently selected view of the report.

Print report: Prints the current report.

Refresh: Redisplays the current report.

 If the report requires parameters to be specified, the Report Viewer will ask the user
for these parameters to be entered again.
Export report: Exports the current report.

Toggle Group Tree: Some reports have the ability to select a portion of the report and
create a sub-report for it. This toggles a tree of possible sub-reports that can be selected
from the main report.
Zoom: Drops a list of zoom options for you to select.

Search Text: Allows you to search the report for specific text.

8.2.5 Creating your own report templates

When designing a Crystal Report template, the template can be set up to require parameters to be
entered to specify exactly which information should be included in the report. When the report
template is viewed, the Operator is prompted for these parameters. These parameters are then
applied to the database query to ensure that the correct subset of information is loaded from the
database.

Under normal circumstances, Crystal Reports would automatically bring up its own dialogue box to
prompt the user for each database parameter in turn. This can be messy and time-consuming,
however, so the AutoTestSQL Report Viewer detects which parameters are needed and prompts for
the parameters in its own way. It looks for specific names for these parameters, and if it finds them,
uses its own prompts to request the information from the user. See Report parameter names, below,
for details of the parameter names automatically detected by the Report Viewer.

 The example Crystal Report templates that are supplied with the AutoTestSQL Report Viewer all
require the Operator to enter parameters to limit the report's information.

105

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Selection of a Test Session

If the report is for a specific Test Session, for example to create a single Test Report, then the
Operator must be asked to select enough information to allow a single Test Session to be retrieved
from the database. In this case, the following dialogue box will be displayed:

Selection of a Product, Operator, serial number or any combination of the three will result in a list of all
the applicable Test Sessions being displayed in the list at the bottom of this dialogue box. The
appropriate Test Session can then be selected, and the [OK] button clicked to display the report.

Selection of other parameters

If the report is not for a single Test Session, then it may require one or more parameters to limit the
data included in the report. In this case, the Report Viewer will display a dialogue box that asks for
each of the parameters in turn. For example, a report which requires a 'Product' parameter, a 'Start
date' parameter and an 'End date' parameter would show the following dialogue box:

Once the required options have been selected, the [OK] button can be clicked to show the report.

Report parameter names

When designing a report template, you can use any of the following parameter names to get the
AutoTestSQL Report Viewer to prompt the user in one of the above ways:

106

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Parameter name Description

ProductTestSessionID Prompts the user for a single Test Session record. See
Selection of a Test Session, above.

 This parameter cannot be used in conjunction with any of
the other parameters in this list.

ProductFamilyName Prompts the user to select a Product Family from a drop-list, and
uses its name as a parameter to the report.

ProductFamilyID Prompts the user to select a Product Family from a drop-list, and
uses its unique record ID as a parameter to the report.

ProductName Prompts the user to select a Product from a drop-list, and uses
its name as a parameter to the report.

ProductID Prompts the user to select a Product from a drop-list, and uses
its unique record ID as a parameter to the report.

OperatorName Prompts the user to select an Operator from a drop-list, and uses
its name as a parameter to the report.

OperatorUserID Prompts the user to select an Operator from a drop-list, and uses
its Operator ID as a parameter to the report.

OperatorID Prompts the user to select an Operator from a drop-list, and uses
its unique record ID as a parameter to the report.

SerialNum Prompts the user to enter a serial number, and uses it as a
parameter to the report.

StartDate Prompts the user to select a start date from a Windows date/time
picker control, and uses it as a parameter to the report.

EndDate Prompts the user to select an end date from a Windows
date/time picker control, and uses it as a parameter to the report.

Date Prompts the user to select a single date from a Windows
date/time picker control, and uses it as a parameter to the report.

Glossary

Part

9

109

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

9 Glossary

.

.css file - See Cascadable Style Sheet.

A

ActiveX - ActiveX describes a group of technologies (incorporating OLE, automation etc) by which
different Windows applications can communicate with each other and use each others' capabilities.

ActiveX Control - An ActiveX Control is a control that can be created in a script, and then
controlled by accessing properties and methods that it exposes through an ActiveX interface.

Administrator - An Operator that has full access to all parts of the AutoTestSQL application.

Automation - Automation is the process by which one application can control another using its
ActiveX interface.

B

Beta - A preliminary or testing stage of a software or hardware product.

Boolean - A Boolean variable in a script is one that can contain the values True or False.

C

Cascadable Style Sheet - A file used in conjunction with HTML files. It defines various styles that
can then be referred to from the HTML file, enabling the style of fonts, etc to be changed without
changing the HTML file itself.

Configuration - A dScope Configuration is a file containing the settings of the dScope. The state
of the dScope settings can be saved as a Configuration, and then re-loaded as a known starting
point for a test.

Constant - A value defined in a script that cannot change.

Control Panel - A program used to change settings in the Windows operating system. It allows
changing of items such as keyboard and mouse settings, display colours and resolution, and
modem, network and printer settings.

D

Database - A collection of information that is organized so that it can be easily accessed,
managed and updated. The AutoTestSQL database is a relational database.

Desktop - The background area of your computer screen, where icons for some applications
appear.

Double-precision - A floating-point number occupying 8 bytes (64 bits). It can have values from -
1.79769313486232e+308 to 1.7976931348623158e+308.

dS-NET - A proprietary serial interface protocol used to connect peripherals such as I/O Switchers
to the dScope.

E

EUT (Equipment Under Test) – The device being tested by the dScope in conjunction with
AutoTestSQL.

110

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Event - A causal occurrence for a script. An event is said to be fired when something occurs to
trigger it, and a corresponding subroutine or function in the script is run.

F

Failed result - A result written to the AutoTestSQL database that, depending on its type, has
failed. For example a numerical result is failed if it is outside the Test Element's specified limits; a
pass/fail result is failed if it is Fail; a string result is failed if either limit is specified and does not
match the result string.

Folder - A named storage area on the computer containing files and other folders. For example, in
"C:\Program Files\Prism Sound\AutoTest", "Program Files" is a folder.

Function - A named group of statements within a script, that can be called from elsewhere in the
script to perform a certain action or group of actions. Functions are similar to subroutines, but
return a value to the part of the script from which they were called.

G

H

Hex (hexadecimal) - A convention for conveniently representing binary data such as digital audio
samples. Each four-bit 'nibble' of the binary word is represented by a character indicating its value:
0..9,A..F. For example, the 24–bit binary value 000000010010110111101111 would be
represented in hex as 012DEF. Hex is available as an amplitude unit throughout dScope in order
to facilitate some digital measurements.

HTML (HyperText Markup Language) - This is a language used for creating documents,
particularly web pages. It consists of a set of symbols or codes inserted in a file that tells web
browsers how to display the page's words and images to the user.

Hungarian notation - This is a system used by some programmers, in which the type of a variable
is specified by inserting one or more letters at the beginning of the variable name.
For example, iReturnValue means that the variable indicating the return value is of type integer,
shown by the i at the start

I

I/O Switcher - The I/O Switcher is a dS-NET device, primarily intended for use with the dScope
Series III test and measurement system. It is a serially-controlled 16-into-2 relay switcher, which
can be used for switching either analogue or digital (AES3) audio signals.
See the documentation accompanying the dScope software for full details of the I/O switcher.

Integer - A 4 byte whole number. It can have values from -2,147,483,648 to 2,147,483,647.

J

K

L

Limit - A Limit can be entered for a Test Element in AutoTestSQL. When the corresponding result
is read by the script, this limit is applied and used to calculate the Pass or Fail status of the result.
See How a result status is calculated for details.

M

Mode - A state of operation of the AutoTestSQL software. Setup mode allows entry and editing of
Products and tests; Test mode allows these Products to be tested; and Fault-find mode allows test
failures to be analyzed and the reasons for failure investigated.

111

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

MSDE (Microsoft SQL Server Desktop Engine) - MSDE is a royalty-free, redistributable database
engine that is fully compatible with Microsoft SQL Server. It has certain limitations - see
Limitations of MSDE for details.

Multi-tone testing - A method of testing where a large number of discrete tones are used to
stimulate the EUT simultaneously. By capturing a single data set of the output of the EUT, many
measurements can be calculated simultaneously. These can include scalar results such as noise,
distortion etc. as well as graphical plots against frequency, such as frequency response, distortion
spectrum etc. This method is much faster than traditional methods, which would require stimuli to
be changed for each scalar measurement and stepped through many frequencies for each plot.
The dScope has a uniquely user-friendly way of setting up multi-tone tests.

N

Non-critical result - A result written to the AutoTestSQL database that has no limits associated
with it. Since no limits exist to compare with the result value, it is treated as non-critical and does
not affect the overall status of a test.

Notepad - A program included in the Windows operating system that lets you view and edit text
files.

O

ODBC (Open DataBase Connectivity) - A standard developed by Microsoft for accessing different
databases from Windows.

OLE (Object Linking and Embedding) - This is the mechanism by which dScope can be remotely
controlled via VBScript.

Open Source - Software where the source code is available for anyone to extend or modify. Linux
is the best-known example; MySQL is an example of an Open Source database.

Operator - A user of the AutoTestSQL application.

P

Passed result - A result written to the AutoTestSQL database that, depending on its type, has
passed. For example a numerical result is passed if it is within the Test Element's specified limits;
a pass/fail result is passed if it is Pass; a string result is passed if either limit is specified, and
matches the result string.

Persistent - A Scriptlet is said to be persistent if it remains in memory throughout a test. For
example, the Product Scriptlet is persistent, whereas individual Test Set Scriptlets are not, as they
are loaded and run when necessary.

Pixel - A single dot on the screen. If the screen resolution is set up to be 800 x 600, this means
that there are 800 pixels across the screen, and 600 down.

Product - An item of equipment that can be tested using AutoTestSQL.

Product Family - A group of Products.

Product Instance - An individual device being tested, or an instance of a Product entered into
AutoTestSQL.

Program folder - The folder containing the AutoTestSQL application (AutoTestSQL.exe).

Q

Query - A query is a request for information from a database. It usually takes the form of a
SELECT statement.

112

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

R

Reading - A Reading can be created from a numerical measurement in the dScope software by
dragging it off its home dialogue box. This allows a flexible representation of the measurement - for
example, Readings can be resized, user-coloured, and can have Limits and bar graphs attached to
them.

Registry - A database of information used by Windows to store program information, associations,
hardware information, etc.

Relational database - A collection of data organized as a set of formally-described tables from
which data can be accessed in different ways without having to reorganize the tables.

Result Set - A grouping of results (Result Elements, or other Result Sets) in the AutoTestSQL
database.

Result Element - A single numerical, boolean or string result in the AutoTestSQL database.

S

Scope - The scope of a variable in a script indicates from where in the script it can be accessed. If
a variable is defined within a function or subroutine, then its scope is within that function only, i.e. it
cannot be used outside the function. If it is defined outside a function, it is a global variable, and its
scope is the entire script.

Script - See VBScript.

ScriptDlg ActiveX Control - An ActiveX Control provided with the dScope software to improve the
user interface options of the VBScript programming language.

Scriptlet - A file of VBScript code, attached to a Product or Test Set, containing a subset of the
tests required for a Product.

SQL (Structured Query Language) - A language used by relational databases to query, update and
manage data.

Status bar - An area at the bottom of the AutoTestSQL, dScope or Report Viewer screen which
displays various information about the current state of the system.

Subfolder - A folder that is underneath another folder in the folder structure on a computer. For
example, in "C:\Program Files\Prism Sound\AutoTest", "Prism Sound" is a subfolder of "Program
Files", and "AutoTest" is a subfolder of "Prism Sound".

Subroutine - A named group of statements within a script, that can be called from elsewhere in
the script to perform a certain action or group of actions. Subroutines do not return a value.

Sweep - A sequence of individual measurements made whilst varying a parameter of the stimulus.
For example a frequency response sweep would be made by measuring the gain of an EUT whilst
varying the frequency of the stimulus. dScope provides a versatile sweeping capability, wherein
many different Generator parameters can be varied whilst plotting up to four simultaneous results.
Many tests which have traditionally been frequency-swept are now better performed using multi-
tone techniques, which are much faster.

T

Table - The basic database storage object consisting of a collection of rows (records) divided into
columns (fields) that contain data.

Test Script - The script that is created automatically by the AutoTestSQL software from a Product
Scriptlet and all the Product's Test Set Scriptlets. This script is then run to perform the tests on the
Product.

113

Operation Manual

© 2004-2005 Prism Media Products Ltd

Revision 1.00Prism Sound AutoTestSQL

Test Set - A group of Test Elements or other Test Sets used to define the hierarchical structure for
a Product's tests in AutoTestSQL.

Test Element - An individual part of a test that corresponds to a single result value.

Test Session - A Test Session for a Product is a test done on a particular Product Instance at a
specific date and time. It contains one or more Result Sets, which in turn may contain other Result
Sets and Result Elements.

Thread - A Windows program can contain one or more threads. This allows several tasks to be
completed at the same time - In AutoTestSQL, for example, one thread can be writing results to
the database, while another is running a new test.

Title bar - A window's title bar is the bar at the top of the window, containing the window name,
and usually buttons to minimize, maximize and close the window.

Toolbar - A bar in the AutoTestSQL, dScope or Report Viewer user interface containing a variety
of 'icons' which can be clicked as shortcuts to various functions.

U

Unknown result - A result written to the AutoTestSQL database, whose pass or failure state
cannot be determined by applying limits. This can occur when Result Elements are first created in
the database but before the result value has been measured.

User Script - A script whose contents are defined by the user. It is automatically referenced by the
AutoTestSQL software and can contain constants, variables, functions and subroutines which are
then made available to all Scriptlets for any Products or Test Sets.

V

Variable - A named storage location in a script containing data that can be modified during
program execution. Each variable has a name that uniquely identifies it within its level of scope.

VBScript - A script or program in the Microsoft Visual Basic Scripting language which performs a
test or series of tests.

W

X

Y

Z

Index

- . -
.css file 109

- A -
ActiveX 109

ActiveX Control 23, 109

Administrator 109
AutoTestSQL Operator 82

Database 93

Alignment 42

Allowed operations 61

Automation 109
dScope Series III 10

AutoTestSQL database 87

AutoTestSQL Report Viewer 100

- B -
Backing up the database 94

Beta 109

Boolean 109

- C -
Cascadable Style Sheet 70, 109

Change Operator 51, 63, 72

Change password 82
At next login 61

Database administrator 93

Code style 44

ColourMsgBox 37

Colours 42

Command-line 93

Comments 44

Common script problems 46

Completion of test 68

Configuration 109

Constant 109
Qualifying 46

Writing scripts 44

Control Panel 109

Copy 51
Edit menu 51

Toolbar 52

Copying 54, 56, 60
Operator 60

Test Element 56

Test Set 56

Creating report templates 104

Crimson Editor 43

Crystal Reports 99
Report parameters 104

Report templates 104

Viewer 103

Cut 51
Edit menu 51

Toolbar 52

- D -
Database 87, 109

Backing up 94

Connecting to 99

Restoring 94

Database administrator 93

Database login 94
Creating new 94

Database string 79
AutoTestSQL Report Viewer 102

Database structure 87
Tables 88

Debugging scripts 43, 45

Deleting 54, 56, 60
Operator 60

Product 54

Product Family 54

Test Element 56

Test Set 56

Description (Test Element) 59

Desktop 109

Discard test results 79

Discarding results 68

Double-precision 109

dScope Series III 10, 11
AutoTestSQL and 10, 11

Script editor 43

dS-NET 109

- E -
Edit menu 51

End Now (stopping a test) 67

Error 45
in script 45

Run-time 45

Syntax 45

Error messages 45

EUT 109

Event 109

- F -
Failed result 109

Calculation of 18

Fault-find mode 74

Selecting 74

FailMsgBox 39

Fault details 76

Fault-find mode 71
Completion 68

Considering 26

Entering fault details 76

How it works 71

Overview 10

Reference 71

Running selected functions 72

Stop 72

Fields and controls 63, 72
Fault-find mode 72

Test mode 63

File menu 51
AutoTestSQL Report Viewer 102

File name format 79

Folder 109

Function 24, 109

Function 47

- G -
General tab 79

GetLimits 32

GetMode 33

GetOperatorID 35

GetOperatorName 35

GetProduct 34

GetProductFamily 34

GetSerialNumber 34

Getting started 7

Glossary 109

- H -
Hanging scripts 46

Help 3

Help menu 51
AutoTestSQL Report Viewer 102

Hex 109

How it works 7

HTML 109
Test Report 70

Hungarian notation 109

- I -
I/O Switcher 109

ID 35
Get Operator 35

Operator 61

Unique record 88

Integer 109

Introduction 3

- L -
Licensing 11

Limit 109
Calculating result status 18

Entering 16

Lower 16, 32

Retrieving from database 32

Upper 16, 32

Entering 59

Line numbers 45

Login dialogue box 82

Loop 46
Script stuck in 46, 67

- M -
Management reporting 99

Overview 10

Manual 3

Menu bar 9
Report Viewer 100

Menus 51
AutoTestSQL Report Viewer 102

Message box 37
Coloured 37

Failures 39

Mode 109
Buttons on Toolbar 52

Retrieving from a script 33

Overview 10

Moving 54, 56, 60
Operator 60

Test Element 56

Test Set 56

MSDE 96, 99, 109
Limitations 96

Multi-tone testing 109

Multi-user setup 95

MySQL 96

- N -
Name 61

Operator 61

Product 55

Product Family 55

Test Set 58

Naming 79

Naming tab 79

Non-critical result 109
Calculation of 18

Notepad 109

- O -
ODBC 99, 109

OLE 109

On-line help 3, 51

OnTestFinish 29

OnTestStart 28

Open Source 109

Operation overview 7

Operation reference 51

Operator 61, 109
Administrator 82

Allowed operations 61

Change term 79

Changing current 51, 63, 72

Copying 60

Deleting 60

Entering details 61

Moving 60

Retrieving from a script 35

Setting up 60

Option Explicit 44, 79

Options 79

Options dialogue box 79
AutoTestSQL Report Viewer 102

osql 93

- P -
Parameters 104

Crystal Reports 104

Report Viewer 104

Passed result 109
Calculation of 18

Password 82
Changing 82

Logging in 82

Operator 61

Paste 51
Edit menu 51

Toolbar 52

Persistent 109

Pixel 109

Print 51, 52

Print preview 51, 52

Print Test Report 79

Product 34, 55, 109
Change term 79

Deleting 54

Entering details 55

Entry of in Fault-find mode 72

Entry of in Test mode 63

Retrieving from a script 34

Setting up 54

Product Family 34, 55, 109
Change term 79

Deleting 54

Entering details 55

Entry of in Fault-find mode 72

Entry of in Test mode 63

Retrieving from a script 34

Setting up 54

Product Instance 109
Change term 79

Entering details 66, 67

Select new 72

Product scriptlet 19, 24

Program folder 109

- Q -
Qualifying constants 46

Query 109

- R -
Readability 44

Reading 109

Registry 109

Relational database 109

Report templates 104

Report Viewer 100, 103

Reporting 10
Overview 10

Reports folder 79
AutoTestSQL Report Viewer 102

Reports tab 79

Restoring the database 94

Result 74
Selecting in Fault-find mode 74

Writing to database 25, 31

Result Element 17, 109
Change term 79

Selecting in Fault-find mode 74

Result Set 17, 109
Change term 79

Result status 16, 18, 59
Database 88

Test Report 70

Result type 16, 18, 59
Database 88

Results 68
Discarding 68

Tree of 65

Re-testing 67

Reusability 44, 47

Run selected functions 72

Run test 63

- S -
Save Test Report 79

Save test results 79

Scope 109

Screen layout 9
Report Viewer 100

Script 109

Script Editor 43

Script functions 28
Built-in 31

OnTestFinish 29

OnTestStart 28

Test Script 28

User Script 36

ValidateSerialNumber 30

Script problems 46

ScriptDlg 109

Scriptlet 24, 109
Change term 79

Folder 79

Product 19, 24, 55

Responsibility of 19

Test Set 19, 24, 58, 59

Scripts 23
Debugging 43, 45

Hanging 46

Reusability 47

Writing 43, 44

Security 82

Select new Product Instance 72

Selecting a failed result 74

Serial number 66, 67
Entering for a test 66, 67

Retrieving from a script 34

Uniqueness of 79

SetResult 25, 31
Description 25

Reference 31

Setting up Products 54

Setting up tests 56, 60

Setup mode 53
Overview 10

Reference 53

Shortcut 93

Show levels on list of results 63, 72

Show Test Report 79

Software release 11

SQL 93, 109

SQL Server 96

Status bar 9, 109
Report Viewer 100

View 51

Stop fault-finding 72

Stop test 63

Stop test on failure 63, 72

StopTest 36

Subfolder 109

Subroutine 24, 47, 109

Sweep 109

System administrator (database) 93

- T -
Table 88, 109

Database 88

Terminology 7

Test 36
Failed 36

Failure 67

Repeating 67

Run 63

Running 66

Stop 63

Stopped 35

Stopping 36, 67

Test completion 68

Test Element 16, 59, 109
Change term 79

Copying 56

Deleting 56

Entering details 59

Moving 56

Setting up 56

Test mode 62
Overview 10

Reference 62

Test Report 68, 70
Overview 10

Printing 79

Saving 79

Showing 79

Test Script 23, 109
Debugging 45

Test Session 109

Test Set 16, 58, 109
Change term 79

Copying 56

Deleting 56

Entering details 58

Moving 56

Setting up 56

Test Set scriptlet 19, 24

Test stopped 68

Test structure 15
Knowledge of in Fault-find mode 77

Overview 15

Scriptlets in 19

TestFailed 36

Tests 62
Performing 62

Setting up 56

TestStopped 35

Text alignment 42

Thread 109

Title bar 109

Toolbar 9, 52, 109
View 51

Tools menu 51

Tree of results 65

- U -
Undefined variable 44, 79

Undo 51

Unknown result 109
Calculation of 18

User interface basics 9
Report Viewer 100

User Script 24, 36, 109

User.vbs 24

Utility Menu 102
AutoTestSQL Report Viewer 102

- V -
ValidateSerialNumber 30

Variable 109
Undefined 44, 79

Variable names 44

VBScript 109
Documentation 23, 45

Introduction to 23

- W -
Writing scripts 43, 44

	General information
	Introduction to AutoTestSQL
	About this manual

	Operation overview
	How it works
	Getting started
	User interface basics
	AutoTestSQL modes
	Reporting
	AutoTestSQL and dScope
	Licensing
	Information about this software release

	Test structure
	Test structure overview
	Test Sets and Test Elements
	Result Sets and Result Elements
	How a result status is calculated
	Scriptlets and their responsibility

	Test Scriptlets
	Introduction to VBScript
	Product and Test Set Scriptlets
	The User Script
	The SetResult function
	Considering Fault-find mode
	Script functions
	Optional Scriptlet functions
	OnTestStart
	OnTestFinish
	ValidateSerialNumber

	Built-in functions
	SetResult
	GetLimits
	GetMode
	GetProductFamily
	GetProduct
	GetSerialNumber
	GetOperatorName
	GetOperatorID
	TestStopped
	TestFailed
	StopTest

	Functions in the User Script
	ColourMsgBox
	FailMsgBox
	Colours
	Alignment

	Writing and debugging scripts
	Choosing a script editor
	Writing scripts
	Debugging scripts
	Common script problems
	Reusability of scripts

	Operation reference
	Menus
	Toolbar
	Setup mode
	Setting up Products
	Entering/editing Product Family details
	Entering/editing Product details

	Setting up tests
	Entering/editing Test Set details
	Entering/editing Test Element details

	Setting up Operators
	Entering/editing Operator Details

	Test mode
	Fields and controls
	Tree of results
	Running a test
	Stopping a test
	Re-testing failures
	Test completion
	The Test Report

	Fault-find mode
	How Fault-find mode works
	Fields and controls
	Selecting a failed result
	Entering fault details
	Knowledge of the test structure

	Reports
	Options dialogue box
	AutoTestSQL security

	The AutoTestSQL database
	Database structure
	Database tables
	Using SQL from the command-line
	Changing the database administrator password
	Creating new database logins
	Backing up and restoring the database
	Multi-user setup
	Limitations of MSDE

	Management reporting
	Connecting to the database
	The AutoTestSQL Report Viewer
	User interface basics
	Menus
	Options dialogue box
	The Crystal Report viewer
	Creating your own report templates

	Glossary

